- •Краткий курс сопротивления материалов
- •Часть 1
- •Глава 1. Введение
- •1.1. Задачи и методы сопротивления материалов
- •1.2. Реальный объект и расчётная схема
- •1.2.1. Модели материала
- •1.3. Классификация сил (модели нагружения)
- •1.4. Напряжения
- •1.5. Общие принципы расчёта на прочность
- •Глава 2. Центральное растяжение – сжатие прямого бруса
- •2.1. Усилия и напряжения в поперечном сечении бруса
- •2.2. Условие прочности
- •2.3. Деформации. Закон Гука
- •2.4. Расчёт стержня с учетом собственного веса
- •2.5. Статически неопределимые системы
- •2.5.1. Расчёт на действие нагрузки
- •2.5.2. Температурные напряжения
- •2.5.3. Монтажные напряжения
- •2.6. Механические характеристики материалов
- •2.6.1. Испытание на растяжение малоуглеродистой (мягкой) стали
- •Характеристики прочности
- •Характеристики пластичности
- •Разгрузка и повторное нагружение
- •Диаграммы напряжений
- •2.6.2. Испытание на сжатие различных материалов
- •2.6.3. Определение твёрдости
- •2.6.4. Сравнение свойств различных материалов
- •2.7. Допускаемые напряжения
- •2.8. Потенциальная энергия упругой деформации
- •Глава 3. Напряжённое и деформированное
- •3.1. Компоненты напряжений. Виды напряжённых состояний
- •3.2. Линейное напряжённое состояние
- •3.3. Плоское напряжённое состояние
- •3.3.1. Прямая задача
- •3.3.2. Обратная задача
- •3.4. Объёмное напряжённое состояние. Общие понятия
- •3.5.Деформации при объёмном напряжённом состоянии.
- •3.5.1. Обобщённый закон Гука
- •3.5.2. Относительная объёмная деформация
- •3.6. Потенциальная энергия упругой деформации
- •3.7. Теории прочности
- •3.7.1. Задачи теорий прочности
- •3.7.2. Классические теории прочности
- •3.7.3. Понятие о новых теориях прочности
- •Глава 4. Геометрические характеристики плоских сечений
- •4.1. Статические моменты.
- •4.2. Моменты инерции
- •4.3. Зависимость между моментами инерции при параллельном переносе осей
- •4.4. Зависимость между моментами инерции при повороте осей
- •4.5. Главные оси и главные моменты инерции
- •Глава 5. Плоский изгиб прямого бруса
- •5.1. Конструкция опор. Определение реакций. Внутренние усилия
- •5.2. Дифференциальные и интегральные зависимости между q, q и m
- •5.3. Построение эпюр поперечной силы q и изгибающего момента m
- •5.4. Нормальные напряжения при чистом изгибе
- •5.5. Условие прочности по нормальным напряжениям. Рациональные формы сечений
- •5.6. Касательные напряжения при поперечном изгибе
- •5.7. Распределение касательных напряжений в балках
- •5.8. Напряжённое состояние при поперечном изгибе.
- •5.9. Касательные напряжения в полках тонкостенных профилей. Центр изгиба
- •Нормальные напряжения:
- •5.10. Потенциальная энергия упругой деформации
- •Глава 6. Сдвиг
- •6.2. Проверка прочности и допускаемые напряжения при чистом сдвиге
- •6.3. Расчёт заклёпочных и сварных соединений
- •Глава 7. Кручение прямого бруса
- •7.1. Основные понятия. Определение крутящих моментов
- •7.2. Напряжения и деформации при кручении стержней круглого и кольцевого сечений
- •7.3. Расчёт валов на прочность и жёсткость
- •7.4. Разрушение валов из различных материалов. Потенциальная энергия упругой деформации
- •7.5. Кручение стержней прямоугольного сечения
- •7.6. Расчёт цилиндрических винтовых пружин с малым шагом
- •Оглавление
3.5.Деформации при объёмном напряжённом состоянии.
Закон Гука
3.5.1. Обобщённый закон Гука
Исследуя деформации и рассматривая вопросы прочности при объёмном и плоском напряжённом состояниях, будем в соответствии с основными гипотезами предполагать, что материал следует закону Гука, а деформации малы.
Изучая центральное растяжение (сжатие) прямого бруса, мы выяснили, что при линейном напряжённом состоянии бесконечно малый элемент испытывает продольную и поперечную деформации, связанные с напряжением формулами (2.9) и (2.7);
,
. (3.24)
Напомним, что Е – модуль нормальной упругости и ν - коэффициент Пуассона – упругие постоянные материала.
Рассмотрим деформацию элемента, находящегося в объёмном напряжённом состоянии (рис.3.13,а). Определим относительные деформации в главных направлениях ε1, ε2 и ε3. Применяя принцип суперпозиции, можно записать
ε1 = ε11 + ε12 + ε13.
где ε11 – относительное удлинение в направлении σ1, вызванное действием только σ1 (рис. 3.13,б);
ε12 – удлинение в том же направлении, вызванное действием только σ2 (рис. 3.13,в);
ε13 – удлинение в том же направлении, вызванное действием только σ3 (рис. 3.13,г).
Поскольку направление σ1 для самого напряжения σ1 является продольным, а для напряжений σ2 и σ3 – поперечным, то по формулам (3.24) находим
,
,
.
Сложив эти величины, будем иметь
.
а б в



г

Рис.3.13
Аналогично получим выражения и для двух других главных удлинений. В результате
(3.25)
Формулы (3.25) носят название обобщённого закона Гука для изотропного тела. Заметим, что сжимающие напряжения подставляют в эти формулы со знаком минус. Из формул (3.25) легко можно получить закон Гука для плоского напряжённого состояния. Например, для случая σ2 = 0
(3.26)
Подчеркнём, что равенство нулю напряжения σ2 не означает, что ε2 также равно нулю. Например, при растяжении пластинки в её плоскости по второй формуле (3.26) можно определить уменьшение толщины пластинки.
Выражения (3.25) справедливы не только для главных деформаций, но и для относительных линейных деформаций по любым трём взаимно перпендикулярным направлениям, поскольку при малых деформациях влияние сдвига от действия касательных напряжений на линейную деформацию представляет собой величину второго порядка малости. Иными словами, индексы «1», «2» и «3» могут быть заменены на индексы х, у и z.
3.5.2. Относительная объёмная деформация
Установим связь между относительным изменением объёма элементарного параллелепипеда и главными напряжениями. До деформации размеры сторон были dx, dy и dz (рис.3.14,а). После деформации эти размеры стали dx + ∆dx, dy + ∆dy и dz + ∆dz (рис.3.14,б).
а б


Рис.3.14
Начальный объём параллелепипеда V0 = dx∙dy∙dz. Объём после деформации V1 = (dx + ∆dx)(dy + ∆dy)(dz + ∆dz).
Найдём абсолютное изменение объёма параллелепипеда:
. (а)
В скобках выражения (а) содержатся относительные удлинения
,
,
.
Произведя в выражении (а) перемножение величин, стоящих в скобках, получим
∆V = V0 ∙ (1 + ε1 + ε2 + ε3 + ε1ε2 + ε2ε3 + ε1ε3 + ε1ε2ε3) – V0.
Учитывая малость относительных деформаций, произведением их можно пренебречь. Тогда относительное изменение объёма
. (3.27)
Выразив главные удлинения через главные напряжения при помощи формул обобщённого закона Гука (3.25), получим:
. (3.28)
Формулу (3.28) перепишем в несколько ином виде, с учётом (3.22)
σ1 + σ2 + σ3 = 3σокт = 3σср.
Тогда
(3.29)
или
σср = K ∙ θ, (3.30)
где
. (3.31)
Величина К называется модулем объёмной деформации. Формула (3.30) представляет собой компактную, отличную от (3.25), формулу записи обобщённого закона Гука. Она удобна ещё и тем, что совпадает по структуре с законом Гука при линейном напряжённом состоянии (σ = Еε).
Из формулы (3.28) видно, что при деформации тела, материал которого имеет коэффициент Пуассона ν = 0,5 (например, резина или сталь в пластичном состоянии) объём тела не меняется. Материал ведёт себя как несжимаемая жидкость.
Из формулы (3.28) также следует, что коэффициент Пуассона не может быть больше 0,5. Действительно, при равномерном всестороннем сжатии (гидростатическом давлении) σср = – р. И если материал будет иметь ν > 0,5, тело увеличит свой объём, что невозможно. Опыты подтверждают это положение: в природе не существует материала с коэффициентом Пуассона, большим 0,5.
