Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Краткий курс лекций по сопромату. Часть 1.doc
Скачиваний:
206
Добавлен:
02.05.2015
Размер:
6.46 Mб
Скачать

3.5.Деформации при объёмном напряжённом состоянии.

Закон Гука

3.5.1. Обобщённый закон Гука

Исследуя деформации и рассматривая вопросы прочности при объёмном и плоском напряжённом состояниях, будем в соответствии с основными гипотезами предполагать, что материал следует закону Гука, а деформации малы.

Изучая центральное растяжение (сжатие) прямого бруса, мы выяснили, что при линейном напряжённом состоянии бесконечно малый элемент испытывает продольную и поперечную деформации, связанные с напряжением формулами (2.9) и (2.7);

,. (3.24)

Напомним, что Е – модуль нормальной упругости и ν - коэффициент Пуассона – упругие постоянные материала.

Рассмотрим деформацию элемента, находящегося в объёмном напряжённом состоянии (рис.3.13,а). Определим относительные деформации в главных направлениях ε1, ε2 и ε3. Применяя принцип суперпозиции, можно записать

ε1 = ε11 + ε12 + ε13.

где ε11 – относительное удлинение в направлении σ1, вызванное действием только σ1 (рис. 3.13,б);

ε12 – удлинение в том же направлении, вызванное действием только σ2 (рис. 3.13,в);

ε13 – удлинение в том же направлении, вызванное действием только σ3 (рис. 3.13,г).

Поскольку направление σ1 для самого напряжения σ1 является продольным, а для напряжений σ2 и σ3 – поперечным, то по формулам (3.24) находим

, ,.

Сложив эти величины, будем иметь

.

а б в

г

Рис.3.13

Аналогично получим выражения и для двух других главных удлинений. В результате

(3.25)

Формулы (3.25) носят название обобщённого закона Гука для изотропного тела. Заметим, что сжимающие напряжения подставляют в эти формулы со знаком минус. Из формул (3.25) легко можно получить закон Гука для плоского напряжённого состояния. Например, для случая σ2 = 0

(3.26)

Подчеркнём, что равенство нулю напряжения σ2 не означает, что ε2 также равно нулю. Например, при растяжении пластинки в её плоскости по второй формуле (3.26) можно определить уменьшение толщины пластинки.

Выражения (3.25) справедливы не только для главных деформаций, но и для относительных линейных деформаций по любым трём взаимно перпендикулярным направлениям, поскольку при малых деформациях влияние сдвига от действия касательных напряжений на линейную деформацию представляет собой величину второго порядка малости. Иными словами, индексы «1», «2» и «3» могут быть заменены на индексы х, у и z.

3.5.2. Относительная объёмная деформация

Установим связь между относительным изменением объёма элементарного параллелепипеда и главными напряжениями. До деформации размеры сторон были dx, dy и dz (рис.3.14,а). После деформации эти размеры стали dx + ∆dx, dy + ∆dy и dz + ∆dz (рис.3.14,б).

а б

Рис.3.14

Начальный объём параллелепипеда V0 = dx∙dy∙dz. Объём после деформации V1 = (dx + ∆dx)(dy + ∆dy)(dz + ∆dz).

Найдём абсолютное изменение объёма параллелепипеда:

. (а)

В скобках выражения (а) содержатся относительные удлинения

, ,.

Произведя в выражении (а) перемножение величин, стоящих в скобках, получим

∆V = V0 ∙ (1 + ε1 + ε2 + ε3 + ε1ε2 + ε2ε3 + ε1ε3 + ε1ε2ε3) – V0.

Учитывая малость относительных деформаций, произведением их можно пренебречь. Тогда относительное изменение объёма

. (3.27)

Выразив главные удлинения через главные напряжения при помощи формул обобщённого закона Гука (3.25), получим:

. (3.28)

Формулу (3.28) перепишем в несколько ином виде, с учётом (3.22)

σ1 + σ2 + σ3 = 3σокт = 3σср.

Тогда

(3.29)

или

σср = K ∙ θ, (3.30)

где

. (3.31)

Величина К называется модулем объёмной деформации. Формула (3.30) представляет собой компактную, отличную от (3.25), формулу записи обобщённого закона Гука. Она удобна ещё и тем, что совпадает по структуре с законом Гука при линейном напряжённом состоянии (σ = Еε).

Из формулы (3.28) видно, что при деформации тела, материал которого имеет коэффициент Пуассона ν = 0,5 (например, резина или сталь в пластичном состоянии) объём тела не меняется. Материал ведёт себя как несжимаемая жидкость.

Из формулы (3.28) также следует, что коэффициент Пуассона не может быть больше 0,5. Действительно, при равномерном всестороннем сжатии (гидростатическом давлении) σср = – р. И если материал будет иметь ν > 0,5, тело увеличит свой объём, что невозможно. Опыты подтверждают это положение: в природе не существует материала с коэффициентом Пуассона, большим 0,5.