
Природные смолы
Основная статья: Древесная смола
Природные смолы в основном состоят из смеси следующих веществ:
смоляные кислоты — наиболее исследованными из этих кислот являются абиетиновая (C20H30O2) и пимаровая, а также сукциновая (янтарная кислота), содержащаяся в янтаре HOOC-CH2-CH2-COOH;
резинолы — одно- или многоатомные смоляные спирты;
сложные эфиры смоляных кислот и смоляных спиртов или одноатомных фенолов (таннолов);
резены — химически инертные вещества-углеводороды высокого молекулярного веса, относящиеся к гетероциклическим соединениям;
эфирные масла — многокомпонентные органические соединения терпенов, спиртов, альдегидов, кетонов и других углеводородов, вырабатываемые эфиромасличными растениями;
Природные смолы применяют в мыловарении, для проклейки бумаги, в медицине, в парфюмерии.
Синтетические смолы
Синтетические смолы — многочисленная группа полимеров, среди которых наиболее известны производные фенола (фенолформальдегидные смолы) и карбамида (карбамидоформальдегидные смолы). Их конечные свойства зависят от технологии производства и вводимых в их состав различных модифицируюших компонентов.
Наиболее широкими областями применения является мебельная промышленность (плиты ДСП) и производство различных пластмасс
Нагревостойкость электроизоляционных материалов
Диэлектрические свойства изоляционных материалов с течением времени ухудшаются. При
длительной эксплуатации изоляция усыхает, уменьшается ее механическая прочность, снижается
пробивное напряжение
. Этот процесс называется старением изоляции. Интенсивность старения во
многом зависит от температуры. Чем выше рабочая температура изолированного изделия, тем быстрее
происходит старение и уменьшается срок службы изоляции. При нормировании допустимого наг
рева
частей электрической машины исходят из того, чтобы соприкасающаяся с ними или расположенная в
непосредственной близости от них изоляция могла выполнять свои функции в течение расчетного срока
эксплуатации машины. Поэтому предельно допустимый нагрев ча
стей электрической машины зависит от
класса изоляции.
Класс
нагревостойкости
Температура
°С
Электроизоляционные материалы ,соответствующие данному
классу нагревостойкости
Y
90
Непропитанные и непогруженные в жидкий
электроизол
яционный материал волокнистые материалы из
целлюлозы, хлопка, шелка, а также соответствующие данному
классу другие материалы и другие сочетания материалов
А
105
Пропитанные или погруженные в жидкий электроизоляционный
материал волокнистые материалы из цел
люлозы, хлопка, шелка,
а также соответствующие данному классу другие материалы и
другие сочетания материалов
Е
120
Некоторые синтетические органические пленки, а также
соответствующие данному классу другие материалы и другие
сочетания материалов
В
130
Материалы на основе слюды (в том числе на органических
подложках), асбеста и стекловолокна, применяемые с
органическими связующими и пропитывающими составами, а
также соответствующие данному классу другие материалы и
другие сочетания материалов
F
155
Мате
риалы на основе слюды, асбеста и стекловолокна,
применяемые в сочетании с синтетическими связующими и
пропитывающими составами, а также соответствующие данному
классу другие материалы и другие сочетания материалов
Материалы на основе слюды, асбеста
и стекловолокна,
применяемые в сочетании с кремнийорганические эластомеры,
Н
180
а также соответствующие данному классу другие материалы и
другие сочетания материалов
С
Более 180
Слюда, керамические материалы, стекло, кварц, применяемые
без связующих составо
в или неорганическими или
элементоорганическими связующими составами, а также
соответствующие данному классу другие материалы и другие
сочетания материалов
Электроизоляционные полимеры
Полимерами называют высокомолекулярные соединения, макромолекулы которых состоят из большого числа повторяющихся звеньев, образованных исходными мономерами.
Степень полимеризации – число молекул мономера, объединившихся в одну молекулу полимера. Например, полистирол имеет степень полимеризации около 6000, а полиэтилен – 28500. Молекулы – полимеры образуются благодаря разрыву двойных химических связей молекул – мономеров. По своему строению полимеры могут быть линейными и пространственными.
Линейные полимеры гибки, эластичны и легко растворимы. Линейная структура макромолекул способствует получению полимерных волокон, каучуков, пленок.
Пространственные
полимеры
обладают большей жесткостью, чем линейные
и их размягчение происходит при очень
высоких температурах. Пространственные
полимеры трудно растворимы.
Термопластичными называют полимеры, способные при многократных нагревах и охлаждениях размягчаться и затвердевать.
Термореактивные полимеры при нагреве претерпевают необратимые изменения свойств и затвердевают, приобретая значительную механическую прочность и твердость.
Полимеры имеют очень большое значение в производстве многих изделий электротехнической, электронной, радиотехнической и других отраслях промышленности. Они применяются в качестве отдельных компонентов при изготовлении электрической изоляции или непосредственно.
Кремнийорганические полимеры – высокомолекулярные элементоорганические соединения, содержащие атомы кремния. Достоинством таких материалов является их надежная работа при температурах от -65°С до +200°С. Например, кремнийорганическая резина, применяющаяся для изготовления высоковольтных изоляторов. К электроизоляционным полимерам относят и природные смолы, такие как шеллак, канифоль, каучук.
Волокнистые электроизоляционные материалы
Волокнистыми
называют материалы, состоящие из частиц
удлиненной формы – волокон. К ним относят
дерево, бумагу, картон, фибру, текстильные
материалы, синтетические волокна,
стеклоткани.
Волокнистые материалы имеют высокую электрическую прочность и относительно невысокую стоимость. Однако они гигроскопичны и имеют низкий класс нагревостойкости: в непропитанном состоянии – класс Y, в пропитанном состоянии – класс A.
Одним из первых электроизоляционных материалов, применявшихся в электротехнике, является дерево. В непропитанном состоянии древесина обладает очень низкими и нестабильными изоляционными свойствами. Поэтому она применяется в качестве электроизоляционного или конструкционно-изоляционного материала только в пропитанном состоянии. В качестве пропитывающих веществ используют парафин, олифу, нефтяное масло, смолы. Однако пропитка не устраняет полностью гигроскопичность древесины. В связи с чем, для улучшения влагостойкости детали из древесины покрывают изоляционным лаком или олифой с последующим запеканием при высокой температуре.
На сегодняшний день наибольшее применение имеют следующие породы дерева: бук, береза, дуб, ольха, клен. Древесина, как правило, используется для изготовления изолирующих штанг, различных опор и крепежных деталей.
При изготовлении высоковольтных конденсаторов используют конденсаторную бумагу – высококачественную тонкую (порядка 10 мкм) бумагу с хорошими изоляционными свойствами.
В кабельной технике применяют кабельную бумагу в качестве изоляции силовых высоковольтных кабелей высокого и низкого напряжений (толщина 0,1 мм; ).
Кабельная полупроводящая бумага применяется для экранирования изоляции силовых высоковольтных кабелей. Слой лент этой бумаги накладывается поверх токопроводящей жилы и поверх изоляции кабелей с напряжением 20 кВ и выше.
Бумага электротехническая общего назначения
Бумаги из синтетических волоконн
Картонн отличается от бумаги большей толщиной. Картон используют в пропитанном состоянии в качестве межобмоточной и межфазовой изоляции в трансформаторостроении.
Материалы
из натуральных волокон
бывают следующих разновидностей:
хлопчатобумажная пряжа, кабельная
пряжа, хлопчатобумажные изоляционные
ленты, изоляционный шелк. Данные материалы
применяются в качестве верхних защитных
покровов изоляции.
Материалы из искусственных волокон бывают следующих разновидностей: вискозный шелк, ацетатный шелк. Ткани из этих волокон прочны и эластичны.
Материалы из синтетических волокон бывают следующих разновидностей: полиамидное волокно (капрон), лавсановый шелк. Данные материалы применяются для изоляции обмоточных проводов.
Пропитанные волокнистые материалы получают путем пропитки в электроизоляционных лаках или составах различных материалов из натуральных органических волокон. Сочетание высокой механической прочности пропитываемой ткани с высокими изоляционными свойствами пропитывающих составов позволяет получать материалы, обладающие комплексом свойств, обусловившим их широкое применение для целей электрической изоляции.
К
пропитанным волокнистым материалам
относят: лакоткани, лакобумаги,
лакированные трубки и изоляционные
ленты (изоленты).
Лакоткани широко применяют для изоляции в электрических машинах, аппаратах, кабельных изделиях в виде обмоток, оберток, прокладок и т.д. Разновидностью лакотканей является стеклоткань, у которой в качестве основы используется стекловолокно. Недостаток лакотканей – повышенное тепловое старение.
При пропитке бумаги лаками получают лакобумаги, которые дешевле лакотканей и в ряде случаев являются их альтернативой. Недостаток лакобумаг – низкая механическая прочность.
Лакированные трубки используются в качестве уплотнителей и дополнительной изоляции.
Изоляционные ленты бывают односторонние и двухсторонние, в зависимости от наличия резиновой смеси на одной или двух сторонах.
Пленочные и слюдяные электроизоляционные материалы
Органические полимерные пленки представляют собой тонкие и гибкие материалы, которые могут быть получены в виде длинных, намотанных в рулоны лент различной ширины. Благодаря высоким изоляционным свойствам, пленки представляют особый интерес для электроизоляционной техники: в электромашиностроении, конденсаторостроении, производстве кабельных изделий.
Полимерные
пленки являются важным элементом
изоляции низковольтных электрических
машин (до 1000 В), где они используются в
качестве витковой и корпусной изоляции
обмоток. Применение полимерных пленок
в кабельной технике позволяет создавать
обмоточные и монтажные провода, а также
силовые кабели с высокими электрическими
и механическими характеристиками при
относительно малой толщине изоляции.
Пленочные материалы используются также
в качестве диэлектрика силовых
конденсаторов.
Слюда – это природный минеральный электроизоляционный материал. Слюда обладает высокой электрической прочностью, нагревостойкостью, влагостойкостью, механической прочностью и гибкостью. Поэтому она применяется в качестве изоляции электрических машин высоких напряжений и больших мощностей.
Миканиты
– это листовые или рулонные материалы,
склеенные из отдельных лепестков слюды
с помощью клеящего лака или сухой смолы.
Миканиты используются в качестве
коллекторной изоляции и различных
изолирующих прокладок в электрических
машинах.
Микалента представляет собой композиционный материал из одного слоя пластинок слюды, склеенных при помощи лака между собой. В качестве подложки используется стеклоткань, покрывающая слюду с обеих сторон.
Из слюды, полученной синтетическим способом, изготавливают слюдяную бумагу. Существует два основных типа изоляционных материалов, изготавливаемых из слюдяных бумаг: слюдиниты и слюдопласты.
Слюдиниты
применяются в изоляции электрических
машин нагревостойкого исполнения (класс
нагревостойкости H) в качестве пазовой
изоляции и межвитковых прокладок.
Область применения слюдопластов включает фасонные изделия электрических машин: коллекторные манжеты, гильзы, трубки, изоляционные цилиндры класса нагревостойкости F.
Каучуки и резины
Натуральный
каучук
является продуктом, содержащимся в
млечном соке (латексе), который извлекают
из стволов каучуконосных деревьев,
растущих в тропических странах.
Синтетические каучуки являются продуктами различных процессов полимеризации изопрена, бутадиена и других органических соединений.
Резина представляет собой вулканизированную многокомпонентную смесь на основе каучуков. Резина применяется в первую очередь в кабельных изделиях.
Кабельные
резины
делятся на два основных класса:
изоляционные и шланговые.
Изоляционные резины служат для изоляции токопроводящих жил. Резиновая смесь накладывается на жилу в виде трубки определенной толщины и в таком виде вулканизируется.
Шланговые резины применяются в качестве защитной оболочки для переносных кабелей и проводов, так как таким изделиям необходима максимальная гибкость.
Полупроводящие резины применяются для экранирования гибких кабелей.
Починочные
резины
используются при сращивании и ремонте
кабелей.
Применение резин в кабельных изделиях позволяет придать им нужную гибкость, влагостойкость, маслонефтестойкость, способность не распространять горение, путем применения в резиновых смесях современных каучуков и других ингредиентов.
Электроизоляционные стекла
Стеклообразное
состояние является разновидностью
аморфного. По твердости, хрупкости и
упругости стекло сходно с типичными
твердыми телами, но отличается от них
характерным для жидкостей отсутствием
симметрии в кристаллической решетке.
Наибольшее распространение находят
конденсаторные стекла (диэлектрик
конденсаторов), установочные стекла
(установочные детали, изоляторы, платы),
ламповые стекла (колбы и ножки осветительных
ламп, различных электровакуумных
приборов), порошковые стекла (стеклянные
припои, эмали, прессованные фасонные
детали) и стекловолокно.
Микалекс – это стекло, наполненное слюдяным порошком. Это дорогостоящий материал. Область применения: держатели мощных ламп, панели воздушных конденсаторов, гребенки катушек индуктивности, платы переключателей.
Минеральные изолиционные материалы
Продукты минерального происхождения являются значительно более нагревостойкими, чем органические волокнистые изоляционные материалы, лаки и смолы. Однако большинство из минералов непригодно для использования в электромашиностроении, так как они не обладают нужными изоляционными и технологическими качествами. Широкое применение в изоляционной технике нашли только слюдяные, асбестовые, стеклянные и керамические изделия.
Асбестовые изделия. В электромашиностроении, кроме асбестовой бумаги, ткани и картона, широко применяют изделия из асбоцемента. Асбоцемент представляет собой прессованный пластический материал, изготовляемый из асбестового волокна (наполнителя) и цемента (связующего), и выпускается в виде досок и труб. Он имеет высокие механические свойства, высокую нагревостойкость и хорошо сопротивляется действию электрической дуги и искр. Поэтому из асбоцемента изготовляют распределительные доски и щиты, стенки дугогасительных камер и перегородок и пр.
Стеклянные изделия. В электромашиностроении стекло применяют, главным образом, для изготовления стекловолокна и стеклоэмалей. Стеклоэмаль представляет собой расплавленное стекло, наносимое тонким слоем на поверхность металлических или других деталей. Основная область применения стеклоэмалей — покрытие поверхностей трубчатых резисторов с целью изоляции и защиты их обмотки от проникновения влаги, коррозии, загрязнения и окисления.
Керамические изделия. Из керамических материалов в электротехнических установках применяют фарфор, стеатит (керамический материал, изготовляемый из талька), различные титанаты (химические соединения титана) и др. Из фарфора изготовляют всевозможные изоляторы; из титанатов, обладающих высокой диэлектрической проницаемостью,— изоляционные прослойки конденсаторов.
К проводниковым материалам с высокой проводимостью относятся медь, алюминий и некоторые сплавы (латунь, фосфористая бронза и др.). Они широко используются для изготовления катушек электрических машин, аппаратов и приборов. К таким материалам предъявляются требования возможно меньшего удельного сопротивления и возможно большей механической прочности. Для различных случаев применения эти требования в той или иной степени уточняются. Например, для катушек машин и аппаратов выгоднее иметь меньшее удельное сопротивление даже за счет некоторого снижения механической прочности. Для воздушных же проводов контактной сети и линий электропередачи важно иметь определенную механическую прочность на разрыв.
Наименьшим удельным сопротивлением обладает чистый металл. Любые примеси повышают удельное сопротивление. Примесь другого металла, имеющего меньшее удельное сопротивление, чем основной, повышает его сопротивление. Это объясняется искажением кристаллической решетки основного металла даже небольшим количеством примеси. Кристаллическая решетка металлов искажается не только введением примесей, но и в результате механических деформаций. В связи с этим обработка металла, приводящая к пластической деформации, вызывает увеличение его удельного сопротивления. В частности, это имеет место в процессе изготовления проводов при прокатке и волочении.
Медь и латунь применяют для изготовления проводов и различных токопроводящих деталей электрических машин и аппаратов. Медные провода и шины получают прокаткой и протяжкой, при этом медь приобретает высокую механическую прочность и твердость (медь марки МП). Такую твердотянутую медь используют для изготовления коллекторных пластин, неизолированных проводов, распределительных шин и пр. При термической обработке твердотянутой меди (отжиге при температуре 330—350 °С) получают мягкую медь марки ММ, обладающую большой гибкостью и способностью сильно вытягиваться; электропроводность ее также увеличивается. Мягкую медь используют для изготовления изолированных проводов, кабелей и пр.
В качестве проводниковых материалов применяют также различные бронзы, представляющие собой сплавы меди с другими металлами. Все бронзы имеют не только более высокую механическую прочность, чем медь, но и большее удельное сопротивление. Для изготовления контактных проводов и коллекторных пластин применяют преимущественно кадмиевые бронзы, для пружин, щеткодержателей, скользящих контактов, ножей рубильников — бериллиевые бронзы. Латунь (сплав меди с цинком) имеет также по сравнению с медью высокую механическую прочность, прочность против истирания, но вместе с тем и значительно более высокое удельное сопротивление. Латунь хорошо штампуется, вытягивается, паяется и сваривается.
Вторым по значению в электротехнике проводниковым материалом является алюминий. Из него изготовляют провода, некоторые детали электрических машин и аппаратов. Так же, как и медь, он при протяжке и других видах холодной обработки получается довольно твердым, а после отжига становится мягким. Плотность алюминия около 2,6 г/см3, примерно в 3,5 раза меньше меди (ее плотность 8,9 г/см ). Для увеличения прочности, и,.улучшения механических свойств к алюминию иногда прибавляют медь, магний, марганец и кремний. Таким путем получают различные алюминиевые сплавы — силумин, дюралюминий и пр.
По твердости различают две марки алюминия: AT — алюминий твердый неотожженный и AM — алюминий мягкий отожженный. Соединение алюминиевых проводов и других деталей производят обычно сваркой или заклепками, так как из-за высокой температуры плавления окиси алюминия, покрывающей поверхность алюминиевых деталей (примерно 2000 °С), и быстрого окисления зачищенной поверхности пайка алюминия обычным способом затруднена.