- •1. Multiple Regression Analysis
- •2. Multiple Regression Analysis
- •3. Multiple Regression Analysis
- •4. Multiple Regression Analysis
- •5. Multiple Regression Analysis
- •6. Multiple Regression Analysis
- •7. Multiple Regression Analysis
- •1. Multiple Regression Analysis
- •2. Multiple Regression Analysis
- •3. Multiple Regression Analysis
- •4. Multiple Regression Analysis
- •5. Multiple Regression Analysis
- •6. Multiple Regression Analysis
- •1. Multiple Regression Analysis
- •2. Multiple Regression Analysis
- •3. Multiple Regression Analysis
- •5. Multiple Regression Analysis
- •6. Multiple Regression Analysis
- •8. Multiple Regression Analysis
- •9. Multiple Regression Analysis
- •10. Multiple Regression Analysis
- •11. Multiple Regression Analysis
- •1. Multiple Regression Analysis
- •2. Multiple Regression Analysis
1. Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: It
-----------------------------------------------------------------------------
Standard T
Parameter Estimate Error Statistic P-Value
-----------------------------------------------------------------------------
Kt_Kt_1 1,88658 0,172213 10,9549 0,0000
i 1036,4 290,608 3,56633 0,0024
-----------------------------------------------------------------------------
Analysis of Variance
-----------------------------------------------------------------------------
Source Sum of Squares Df Mean Square F-Ratio P-Value
-----------------------------------------------------------------------------
Model 6,09787E6 2 3,04894E6 342,65 0,0000
Residual 151266,0 17 8897,98
-----------------------------------------------------------------------------
Total 6,24914E6 19
R-squared = 97,5794 percent
R-squared (adjusted for d.f.) = 97,437 percent
Standard Error of Est. = 94,3291
Mean absolute error = 67,7037
Durbin-Watson statistic = 2,22523
2. Multiple Regression Analysis
Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: Pt_Pt_1
-----------------------------------------------------------------------------
Standard T
Parameter Estimate Error Statistic P-Value
-----------------------------------------------------------------------------
Mt 0,0000920325 0,00000700683 13,1347 0,0000
-----------------------------------------------------------------------------
Analysis of Variance
-----------------------------------------------------------------------------
Source Sum of Squares Df Mean Square F-Ratio P-Value
-----------------------------------------------------------------------------
Model 0,0488982 1 0,0488982 172,52 0,0000
Residual 0,00510183 18 0,000283435
-----------------------------------------------------------------------------
Total 0,054 19
R-squared = 90,5522 percent
R-squared (adjusted for d.f.) = 90,5522 percent
Standard Error of Est. = 0,0168355
Mean absolute error = 0,0141401
Durbin-Watson statistic = 0,988047
Приложение №4.12
(Распределение лага)
Kt=(1-)Kt-1+It
(Kt-It)=(1-)Kt-1
Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: Kt-It
-----------------------------------------------------------------------------
Standard T
Parameter Estimate Error Statistic P-Value
-----------------------------------------------------------------------------
Kt-1 0,943534 0,000188183 5013,92 0,0000
-----------------------------------------------------------------------------
Analysis of Variance
-----------------------------------------------------------------------------
Source Sum of Squares Df Mean Square F-Ratio P-Value
-----------------------------------------------------------------------------
Model 6,9449E8 1 6,9449E825139373,25 0,0000
Residual 607,763 22 27,6256
-----------------------------------------------------------------------------
Total 6,94491E8 23
R-squared = 99,9999 percent
R-squared (adjusted for d.f.) = 99,9999 percent
Standard Error of Est. = 5,25601
Mean absolute error = 4,32002
Durbin-Watson statistic = 1,64666
Kt=(1-)Kt-1+0It+1It-1
Kt=(1-)Kt-1+0It+(1-0)It-1
(Kt-It-1)=(1-)Kt-1+0(It-It-1)
Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: Kt-It-1
-----------------------------------------------------------------------------
Standard T
Parameter Estimate Error Statistic P-Value
-----------------------------------------------------------------------------
Kt-1 0,943536 0,000194443 4852,52 0,0000
It-It-1 0,998999 0,0104806 95,3192 0,0000
-----------------------------------------------------------------------------
Analysis of Variance
-----------------------------------------------------------------------------
Source Sum of Squares Df Mean Square F-Ratio P-Value
-----------------------------------------------------------------------------
Model 6,9854E8 2 3,4927E812073536,73 0,0000
Residual 607,5 21 28,9286
-----------------------------------------------------------------------------
Total 6,9854E8 23
R-squared = 99,9999 percent
R-squared (adjusted for d.f.) = 99,9999 percent
Standard Error of Est. = 5,37853
Mean absolute error = 4,31424
Durbin-Watson statistic = 1,65638
