
- •ЛЕКЦИЯ 1. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ
- •Колебания – это такое изменения состояния системы, при котором ее параметры меняются со
- •Частотой (линейной частотой) периодических колебаний называют число колебаний, совершаемых за единицу времени:
- •Колебания величины x называются гармоническими, если эта величина меняется со временем t по
- •xAcos( t 0 )
- •xAcos( t 0 )
- •x Acos( t 0 )
- •Гармоническое колебание можно представить графически с помощью вращающегося вектора-амплитуды.
- •ЛЕКЦИЯ 1. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ
- •Если смещение консервативной механической системы из положения устойчивого равновесия описывается одним параметром x,
- •Таким образом, при малых смещения из положения устойчивого равновесия:
- •В этом случае уравнение движения тела имеет вид:
- •Рассмотрим спиральную пружину жесткостью k, один конец которой закреплен неподвижно, а к другому
- •Если точка совершает гармонические колебания по закону
- •Математический маятник –
- •Физический маятник – твердое тело, подвешенное на неподвижной горизонтальной оси и способное совершать
- •Выведем тело из положения равновесия, отклонив его на малый угол , и
- •Момент силы реакции опоры (оси) N равен нулю, поскольку равно нулю плечо этой
- •mgaI 0
- •Приведенной длиной lпр физического маятника называется длина такого математического маятника, период колебаний которого
- •Отложим в направлении от точки O к точке C отрезок OO длины lпр.
- •Теперь мысленно подвесим маятник к точке O . Приведенная длина полученного маятника:
- •Таким образом, приведенные длины
- •ЛЕКЦИЯ 1. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ
- •Пусть система участвует одновременно в двух гармонических колебаниях одинаковой частоты, направленных вдоль оси
- •Угловая скорость вращения
- •Таким образом, при сложении двух однонаправленных гармонических колебаний
- •На рисунке приведен пример сложения двух гармонических колебаний разных частот, амплитуд и начальных
- •При сложении однонаправленных гармонических колебаний с разными частотами
- •На рисунке приведен пример сложения двух гармонических колебаний разных частот, амплитуд и начальных
- •Однако при сложении колебаний с близкими частотами
- •На рисунке приведен пример сложения двух гармонических колебаний близких частот (50 и 49
- •Биения представляют собой один из примеров модулированных колебаний, т.е. колебаний, происходящих по закону
- •Если точка движется по плоскости таким образом, что ее проекции на оси X
- •При сложении колебаний одинаковой частоты
- •Выведем уравнение наклонного эллипса. Для этого
- •На рисунке изображена траектория точки, совершающей два перпендикулярные гармонические колебания одинаковых частот:
- •На рисунке изображена траектория точки, совершающей два перпендикулярные гармонические колебания одинаковых частот:
- •Если частоты взаимно перпендикулярных колебаний различны, то траектория точки представляет собой в общем
- •При сложении взаимно перпендикулярных колебаний с различными, но кратными частотами результирующее колебание происходит
- •На рисунке изображена траектория точки, совершающей два перпендикулярные гармонические колебания, частоты которых относятся
- •По виду фигуры Лиссажу можно судить о соотношении частот складываемых взаимно перпендикулярных колебаний:
- •ЛЕКЦИЯ 1. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ
- •Во всякой колебательной системе есть силы трения и сопротивления среды (диссипативные силы), в
- •Выведем тело из положения равновесия, растянув или сжав пружину и предоставим систему самой
- •Несмотря на то, что функция
- •Скорость тела при затухающих колебаниях равна
- •Коэффициент затухания
- •Время жизни колебаний - это промежуток времени, в течение которого амплитуда колебаний уменьшается
- •Логарифмический декремент затухания ( ) – натуральный
- •Добротность Q – умноженное на число количество
- •Поскольку энергия системы прямо пропорциональна квадрату амплитуды A колебаний, то
- •При увеличении коэффициента сопротивления среды r и, соответственно, коэффициента затухания период затухающих колебаний
- •ЛЕКЦИЯ 1. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ
- •Свободные колебания, возникающие под влиянием начального толчка, ввиду действия сил трения и сопротивления,
- •Вынужденные колебания – колебания, возникающие в механической системе под действием внешней периодической силы
- •xA0e t ( t 0 ) Acos( t 0 )
- •Определим амплитуду A, сдвиг фаз между смещением x и вынуждающей силой F в
- •Подставим величину x, ее первую и вторую производные в дифференциальное уравнение вынужденных колебаний:
- •Сумма трех построенных векторов должна быть равна вектору, описывающему колебание
- •Всякая механическая колебательная система характеризуется собственной частотой 0 и коэффициентом затухания . При
- •На рисунке построен график зависимости амплитуды A вынужденных колебаний от частоты вынуждающей силы.
- •Амплитуда Amax вынужденных колебаний в условиях резонанса (максимальная амплитуда):
- •На рисунке изображено семейство резонансных кривых при различных значениях коэффициента затухания
- •Стремление 0 означает, что
- •Амплитуда вынужденного колебания равна величине смещения тела из положения равновесия:

На рисунке построен график зависимости амплитуды A вынужденных колебаний от частоты вынуждающей силы. Этот график называется
амплитудной резонансной кривой.
Рассмотрим параметры, которые характеризуют резонансную кривую.
A F0
m( 02 2 )2 4 2 2

На резонансной частоте = р функция A( ) достигает максимума.
Тогда выражение для р легко найти, приравняв производную dA/d к нулю
(или производную от подкоренного выражения):
dd [( 02 2 )2 4 2 2 ] 0
Тогда для резонансной частоты получаем формулу:
р 02 2 2
При малом затухании, т.е. при ( 0 >> )
р 0

Амплитуда Amax вынужденных колебаний в условиях резонанса (максимальная амплитуда):
Amax A( р ) |
|
F0 |
|
|
|
|
|||||
|
|
|
|
|
|||||||
m ( 02 р2 )2 |
4 2 |
|
|||||||||
|
|
|
|
|
|
р2 |
|||||
|
|
F0 |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
2m |
|
02 2 |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
В условиях малого затухания:
Amax |
F0 |
|
2m 0 |
В идеализированной системе, т.е. в |
|
|
|
отсутствие затухания амплитуда A |

На рисунке изображено семейство резонансных кривых при различных значениях коэффициента затухания

Стремление 0 означает, что
внешняя сила F = F0cos( t) с течением времени изменяется очень медленно, т.е. ее можно считать постоянной величиной
F F0.
В этих условиях тело смещается из положения равновесия и его координата x мало меняется со временем.

Амплитуда вынужденного колебания равна величине смещения тела из положения равновесия:
F F
A0 A( 0) m( 02 0)02 4 2 0 m 0 02
Если системой является пружинный маятник, то 0 = (k/m)1/2,
тогда A0 = F0/k, т.е. амплитуда вынужденного колебания совпадает с удлинением пружины под действием постоянной силы.