Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электромагнитные / Электромагнитные.doc
Скачиваний:
25
Добавлен:
27.04.2015
Размер:
802.3 Кб
Скачать

3.1. Теоретические сведения

При движении в магнитном поле на электрон действует сила Лоренца (рис.3.1):

, (3.1)

где -е - заряд электрона (e > 0), v - скорость электрона, B - индукция магнитного поля.

Таким образом, Fл = -еvB sin, где  - угол между векторами и , а направлениевыбирается так, как показано на рис.3.1 (вспомните определение векторного произведения).

Рис.3.1

Если, то электрон движется в фиксированной плоскости, перпендикулярной к, т.к., и ускорение электрона вдольравно нулю.не совершает работу над электроном (так как) и изменяет скоростьтолько по направлению. При этом нормальное ускорение электрона остается постоянным по величине и равно

, (3.2)

откуда радиус окружности, по которой движется электрон, равен

, (3.3)

Один оборот электрон совершает за время

, (3.4)

Таким образом, период обращения электрона по окружности не зависит от скорости электрона. Период определяется только величиной индукции и удельным зарядом электрона.

Если угол  между векторами скорости и индукциине равен, то скорость можно представить в виде суммы:, где, а. При этом, так как.

Таким образом, электрон движется с постоянной скоростью вдольи одновременно вращается вокруг линии, параллельной, с периодом,

Рис.3.2

определенным по формуле (3.4). В результате траектория электрона является винтовой линией (рис.3.2), проекция которой на плоскость, перпендикулярную к B, представляет собой окружность радиуса

Предположим, что в однородном магнитном поле В из некоторой точки С вылетают электроны (пучок электронов), имеющие одинаковую скорость и разные скорости. Если«для всех электронов (малые углы α, см.рис.3.3), то. В этом случае все электроны, вылетающие из точки С, через одинаковое время Т попадут в одну и ту же точку О или, как говорят, сфокусируются в точке О. Очевидно, что

Следовательно, зная расстояние СО, v и В, можно найти е/m. На этой идее и основан метод определения удельного заряда электрона в дан- ной работе. На рис.3.3 схематически показана электронно-лучевая трубка. Электроны, испускаемые горячим катодом, проходят через отверстие в диафрагме А, играющей роль анода.

Рис.3.3

При ускоряющей разности потенциалов Uа = а - к электроны приобретают скорость, которую можно определить из соотношения:

½mv2 = eU (3.5)

Затем пучок электронов проходит между пластинами конденсатора С, на которые пода-

ется переменное напряжение. Под действием переменного электрического поля электроны в разные моменты времени будут отклоняться на разные углы α от оси прибора и на экране трубки появится светящаяся полоска НК (см. рис.3.3).

Кроме электрического поля на электрон будет действовать продольное магнитное поле соленоида, внутрь которого вставлена электронно-лучевая трубка. Таким образом, в промежутке между диафрагмой и экраном электроны будут двигаться по винтовым линиям.

При увеличении магнитного поля линия НК на экране осциллографа сокращается и постепенно стягивается в точку. Эту точку называют фокусом электронов. Обозначим через Вф магнитное поле, при котором наступает фокусировка. За время Т электроны проходят отрезок

L = v||Т. (3.6)

Учитывая, что v||v при малых α выражение (3.4) в формулу (3.6) получим:

(3.7)

Таким образом, все электроны через время, равное одному периоду, пересекут ось прибора на одинаковом расстоянии L от конденсатора. На рис.3.3 показаны траектории нескольких электронов. Все они пересекаются в одной точке О.

Магнитное поле можно подобрать так, чтобы фокус пришелся как раз на флуоресцирующий экран. При этом отрезок L равен расстоянию между конденсатором и экраном, которое легко измерить.

Подставляя в формулу (3.7) значение скорости из выражения (3.5), получаем расчетную формулу для удельного заряда электрона:

(3.8)

В данной установке используется электронный осциллограф СИ-1, электронно-лучевая трубка которого вынута из него и закреплена в соленоиде, создающем магнитное поле. Оси трубки и соленоида совпадают. Питание трубки и напряжение, подаваемое на отклоняющие пластины, подводятся многожильным кабелем. Анодное напряжение трубки измеряется электростатическим киловольтметром.

    1. Порядок выполнения работы

  1. Собрать схему (имеется на рабочем месте установки. При этом ручки осциллографа установить в положение: "Род синхронизации" - на "Внешнее, "Делитель" - на "Калибровку", "Род работы" - на "Усиление".

  2. Включить блок питания осциллографа. После прогрева на экране трубки должна появиться светящаяся линия. Отрегулировать яркость и четкость линии ручками "Яркость" и "Фокус". Расположить светящуюся линию в центре экрана электронно-лучевой трубки ручками "Смещение У" и "Смещение Х".

  3. С помощью ручек осциллографа "Усиление" и "Калибровка" ограничить длину светящейся линии до 1..1,5 см, чтобы угол α был мал.

  4. Измерить величину ускоряющего напряжения Ua с помощью вольтметра блока питания. Величину Ua записать в таблицу измерения.

  5. Включить блок питания соленоида тумблером "Сеть". Перед включением ручка "Регулировка тока соленоида" должна находиться в положении "О".

  6. Постепенно увеличивая силу тока в соленоиде, добиться, чтобы светящаяся линия на экране трубки стянулась в точку при данной величине ускоряющего потенциала. При дальнейшем увеличении силы тока на экране вновь появится светящаяся линия, которая затем снова стянется в точку. Второе прохождение через фокус происходит в том случае, когда электроны на пути к экрану совершают два оборота по винтовой линии, третье прохождение - при трех оборотах и т.д. Каждое прохождение электронов фиксируется и значение тока соленоида Iсn / n (n - число прохождения электронов через фокус), соответствующее этим прохождениям, заносится в таблицу измерений.

  7. На движение электронов в трубке влияют внешние поля. Наибольшее влияние на точность измерений оказывает продольное магнитное поле, складывающееся с полем соленоида. Внешнее продольное поле накладывается на поле соленоида. Для того, чтобы исключить влияние внешних полей, измерения, указанные в п.6 проводятся при двух направлениях тока в соленоиде. Это выполняется с помощью тумблера "Переполюсовка соленоида".

Полученные значения I+сn при прямом включении соленоида и I-cn при обратном включении соленоида нужно усреднить для каждого прохождения электронов через фокус и среднее значение занести в таблицу измерений. Соответствующие значения Вфп найти по графику В= f(I).

Если Вф1, Вф2, Вф3 - магнитные поля, при которых электроны фокусируются на экране после прохождения одного, двух и трех витков по спирали соответственно, то нужно найти среднее значение

,

которое и подставляется затем в формулу (3.8) для определения е/m.

Абсолютная ошибка в определении e/m находится по формуле

где учтено, что ∆Вфф = ∆Iс/Iс.

Таблица 2

m

I+сn, A

I-cn, A

Icn, A

Вфп, Тл

Ua, B

L, м

e/m, Кл/к2

∆(e/m), Кл/к2

1

2

3

    1. Контрольные вопросы

  1. Сила Лоренца.

  2. По какой траектории движется электрон в однородном магнитном поле при произвольном направлении начальной скорости?

  3. В чем заключается фокусировка электронов?

  4. Каким будет движение электронов в электронно-лучевой трубке при переменном напряжении на отклоняющих пластинах при В = О и В ≠ О?

  5. Как изменяется скорость электронов при движении в постоянном магнитном поле?

  6. Чему равен период обращения электрона в магнитном поле?

  7. Получите расчетная формула для определения е/m.

Литература. [1, §§ 18.1, 18.3; 2, §§ 36-38; 3, §§ 41, 43] .

  1. ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА

МЕТОДОМ МАГНЕТРОНА

Цель работы: знакомство с методом магнетрона и определение удельного заряда электрона (е/m).

Приборы и принадлежности: электронная лампа 2Ц2С (или аналогичная ей), соленоид, источник питания, вольтметр, амперметр, миллиамперметр.