
- •Матричные
- •Матричные биосинтезы
- •Существует три основных типа матричных биосинтезов.
- •Основной постулат молекулярной биологии
- •Генетическая организация генома млекопитающих
- •ДНК генома делят на:
- •Строение ДНК
- •Первичная структура ДНК:
- •Вторичная структура ДНК:
- •Хроматин –
- •Уровни организации хроматина
- •Уровни организации хромосомы
- •Гистоны
- •Гистоны Н1 связываются с ДНК в межнуклеосомных участках (линкерных последовательностях) и
- •Гистоны
- •Негистоновые белки
- •Строение РНК
- •Гибридизация
- •Репликация
- •Функции ДНК
- •Механизм репликации ДНК– полуконсервативный.
- •Постулаты Корнберга (1955 г)
- •Синтез нуклеиновых кислот происходит в ядре и митохондриях
- •Этапы репликации.
- •Во время миграции репликативной вилки происходит разделение цепей родительской ДНК с участием ДНК-хеликазы.
- •Далее действует раскручивающий белок.
- •ДНК-полимераза α катализирует синтез короткого (до 10 нуклеотидов)
- •Элонгация репликации –
- •Элонгация репликации
- •После завершения репликации происходит метилирование нуклеотидных остатков вновь образованных цепей ДНК.
- •Теломераза обеспечивает восстановление недореплицированных 5`-концов.
- •Схема
- •Ферменты репликации
- •ДНК-полимеразы
- •Механизм действия ДНК-полимеразы
- •Расположение ферментов репликации
- •Репарация ошибок и повреждений ДНК
- •Деградация и репарация ДНК
- •Ферменты репарации
- •Репарация ДНК по механизму вырезания нуклеотидов
- •Синтез ДНК на матрице РНК (обратная транскрипция)
- •Обратная
- •Транскрипция-
- •Структура т-РНК
- •Синтез идёт из нуклеозидтрифосфатов.
- •Промотор
- •Транскрипция-
- •Экспрессия генов (поток генетической информации включает транскрипцию и трансляцию.
- •Расположение функциональных участков на молекуле м-РНК
- •В транскрипции различают три фазы
- •Процесс транскрипции
- •Посттранскрипционный процессинг-
- •Посттранскрипционный процессинг м-РНК
- •Кэпирование
- •Полиаденилирование
- •Сплайсинг генов
- •Механизм
- •Эукариотические гены имеют фрагментарное строение: они состоят из нескольких значащих участков (экзонов), разделённых
- •Система экзонов и интронов в гене
- •Сплайсосома координирует сплайсинг. Сплайсосома- комплекс малых ядерных РНК и белков (малых ядерных нуклеопротеинов).
- •Контроль на уровне транскрипции
- •Посттранскрипционная модификация т-РНК
- •Посттранскрипционная
- •Рибосомы – нуклеопротеиды.
- •Структура субчастиц рибосом
- •Полисома
- •Генетический код –
- •Свойства генетического кода.
- •Аминоацил-тРНК-синтетазы
- •Активация аминокислоты
- •Активация аминокислоты
- •Схема образования аминоацил-тРНК
- •Трансляция –
- •Этапы
- •Инициация
- •Процесс формилирования предотвращает участие аминогруппы АМК в образовании пептидной связи и обеспечивает синтез
- •Образование
- •Расположение функциональных центров на малой и большой субчастицах рибосомы
- •Элонгация трансляции
- •Формилметионин-тРНК поступает сначала на А-центр,
- •Элонгационный цикл
- •Реакция транспептидации
- •Главное событие транслокации – перемещение пептидил-тРНК из А в Р-участок рибосомы.
- •Для синтеза одной пептидной связи нужно 4АТФ:
- •Терминация
- •Терминация
- •Синтез митохондриальных белков
- •Посттрансляционная модификация
- •Ингибиторы белкового синтеза
- •Ингибиторы репликации
- •Ингибиторы синтеза нуклеотидов применяются при лечении
- •Аналоги нуклеозидов (ИДУ) применяют при лечении вирусных гепатитов.
- •Аметоптерин
- •Ингибиторы транскрипции
- •Ингибиторы трансляции
- •Действие антибиотиков на белковый синтез
- •Влияние облучения на синтез белков
- •При облучении активируется СРО
- •Действие на репликацию
- •Влияние облучения на транскрипцию.
- •Мутации – разнообразные изменения генома.
- •Действие мутагенов
- •Точечные мутации –
- •Антимутагены
- •Генная инженерия –
- •Цели генной инженерии
- •Достижения генетической инженерии
- •Синтез инсулина при помощи методов генной инженерии

Теломераза обеспечивает восстановление недореплицированных 5`-концов.

Схема
удлинения 3`-конца ДНК
с
помощью РНК-
содержащего
фермента
теломеразы.

Ферменты репликации
ДНК-топоизомераза (нуклеаза) разрывает цепь ДНК (3`-5`-фосфодиэфирную связь), а в конце репликации зашивает надрезы.
ДНК-хеликаза расплетает двойную спираль ДНК.
Белки, дестабилизирующие спираль, связываются с
одноцепочечной ДНК и предотвращают комплементарное скручивание матричных цепей.

ДНК-полимеразы
имеют цинк в активном центре,
для реакции необходим магний.
ДНК-полимераза α синтезирует РНК (праймер, затравка) длиной до 10 нуклеотидов.
ДНК-полимераза δ продолжает синтез новой непрерывной цепи в направлении от 5`- к 3`- концу (лидирующая цепь).
ДНК-полимераза α и ε ведут синтез фрагментов Оказаки на отстающей цепи. Каждый фрагмент Оказаки состоит из 100 нуклеотидов, содержит праймер, который удаляет ДНК- полимераза β.
ДНК-лигаза соединяет разрывы отстающей цепи ДНК.

Механизм действия ДНК-полимеразы

Расположение ферментов репликации


Репарация ошибок и повреждений ДНК
Молекула ДНК подвергается спонтанным (ошибки репликации) и индуцированным повреждениям (УФО, радиация, химические вещества).
Снижение активности ферментов
репарации приводит к накоплению повреждений (мутаций) в ДНК.

Деградация и репарация ДНК
Дефектная область одной цепи ДНК может быть исправлена по неповреждённой комплементарной цепи.
Одноцепочечные разрывы ДНК, вызванные ионизирующей радиацией, может быть репарированы прямым лигированием или рекомбинацией.

Ферменты репарации
ДНК-N-гликозидазы обнаруживают и
удаляют повреждённые основания ДНК.
ДНК-инсертаза присоединяет основания к дезоксирибозе.
Эндонуклеаза определяет
повреждения и гидролизует 3`-5`-фосфодиэфирную связь.
Экзонуклеаза находит место разрыва цепи и удаляет повреждённый участок.
ДНК-полимераза β достраивает повреждённую нуклеотидную цепь.
ДНК-лигаза соединяет неповреждённый и вновь синтезированный участки цепи ДНК.