
- •Кафедра физики и высшей математики
- •Лабораторная работа № 23
- •Краткая теория.
- •I. Природа света
- •Основные понятия и закономерности волнового процесса.
- •3. Интерференция света.
- •4. Цвета тонких пленок
- •5. Полосы равной толщины. Кольца Ньютона.
- •Рисунки к лабораторной работе №23
- •2. Принцип Гюйгенса
- •Принцип Гюйгенса - Френеля
- •4. Метод зон Френеля
- •5. Дифракция от щели в параллельных лучах
- •6. Дифракционная решетка
- •Часть I
- •Часть II
- •Контрольные вопросы:
- •Лабораторная работа № 25
- •Основные определения
- •Поляризация при отражении и преломлении
- •Поляризация при двойном лучепреломлением.
- •Поляризационная призма Николя.
- •Закон Малюса
- •Порядок выполнения работы.
- •Рисунки к лабораторной работе №25
- •Контрольные вопросы.
- •Описание установки и порядок выполнения работы.
- •Рисунки к лабораторной работе № 25 а
- •2. Дисперсия света
- •3. Сериальные формулы
- •4. Ядерная модель строения атома по Резерфорду
- •5. Затруднения теории Резерфорда
- •6. Понятие о квантах и постоянная Планка
- •Постулаты Бора
- •Волны де Бройля
- •9. Линейчатые спектры по теории Бора
- •Энергетические уровни в атоме
- •II. Вывод расчетной формулы
- •III. Описание установки и порядок выполнения работы
- •Порядок выполнения работы
- •Порядок выполнения работы:
- •Контрольные вопросы.
- •Изучение работы газового лазера Краткая теория
- •Результаты вычисления длины волны
- •Порядок выполнения работы
- •Рисунки к работе №27
- •Контрольные вопросы.
- •Определение чувствительности фотоэлемента, исследование светоотдачи электролампы, определение работы выхода и красной границы фотоэффекта.
- •1. Основные понятия
- •Внешний фотоэффект, законы Столетова.
- •Внешний фотоэффект и волновая теория света
- •4. Уравнение Эйнштейна для внешнего фотоэффекта
- •5. Внутренний фотоэффект
- •Типы фотоэлементов
- •Работа состоит из 2-х частей:
- •Определение чувствительности фотоэлемента.
- •Определение удельной мощности электролампы.
- •Дозиметрический контроль сред Краткая теория
- •1. Биологическое действие ионизирующего излучения
- •2. Единицы дозиметрии
- •Описание установки и порядок выполнения работы.
- •Работа выполняется в следующем порядке:
- •Определения половинного слоя ослабления гамма-излучения в веществе. Краткая теория.
- •1. Радиоактивность.
- •Контрольные вопросы.
- •Определение температуры тел с помощью оптического пирометра Краткая теория.
- •Описание установки и порядок проведения работы
- •Вывод расчетной формулы
- •Порядок выполнения работы.
- •Обработка результатов измерений
- •Расчетная таблица
- •Контрольные вопросы:
- •«Определение резонансного потенциала атомов гелия и ртути».
- •Контрольные вопросы.
6. Понятие о квантах и постоянная Планка
Целый ряд световых явлений, как например, фотоэффект, линейчатые спектры и другие, не могли быть объяснены с точки зрения волновой теории света и в начале XX века зарождается новая теория света- квантовая теория. В 1900 году ученый Макс Планк предложил теорию, согласно которой лучистая энергия испускается и поглощается не непрерывным волновым потоком, а как бы отдельными порциями, которые получили название квантов. По теории Планка величина энергии кванта пропорциональна частоте колебаний :
|
(4) |
Коэффициент пропорциональности h является универсальной постоянной т.е. независящей от условий опыта, и получили название п о с т о я н н о й Планка.
Кванты света получили название ф о т о н о в.
Одним из основным выводов теории относительности Эйнштейна является закон, устанавливающий взаимосвязь массы и энергии: m c2
где m -масса тела; с -скорость света; -энергия связанная с массой m.
В силу этого закона фотон должен обладать массой:
|
(5!) |
Так как фотон движется со скоростью света, то его масса покоя должна быть равна нулю, m0 = 0, т.е. не существует покоящихся фотонов.
Обладая массой, фотон обладает и импульсом. Импульс фотона можно определить из равенства:
p
= |
(5!!) |
Таким образом, фотон подобно любой движущейся частице обладает энергией, массой, импульсом. Наличие у фотона массы и импульса экспериментально подтверждается опытами П.Н Лебедева по измерению светового давления.
Постулаты Бора
В 1913 г. Нильс Бор предложил новую теорию излучения, в которой ему удалось согласовать теорию атома Резерфорда с эмпирической формулой Бальмера.
В основу теории Бора положены следующие три постулата:
1.
При движении электрона вокруг ядра
атома возможны только те орбиты, для
которых момент количества движения
электрона кратен
. Математически это записывается
равенством:
mr
= n
|
(6) |
где m - масса электрона; - скорость электрона;
r - радиус орбиты ; n - целое число 1,2,3,4.......
h - постоянная Планка.
Орбиты, удовлетворяющие указанному условию, называется в о з м о ж н ы м и или стационарными. Число n называют г л а в н ы м квантовым числом.
2. Второй постулат утверждает: когда электрон движется по одной из возможных круговых орбит - атом не излучает.
Все попытки как-нибудь логически обосновать этот постулат оказались тщетным.
3. Если электрон под каким-либо воздействием переходит с орбиты, близкой к ядру на какую-либо другую более удаленную, то энергия атома увеличивается, на что требуется затрата внешней энергии. Но такое возбужденное состояние атома малоустойчиво и электрон падает обратно по направлению к ядру на более близкую возможную орбиту.
Третий постулат Бора утверждает: когда электрон перескакивает /падает/ с одной орбиты на другую, лежащую ближе к ядру атома, то потерянная атомом энергия переходит в один квант лучистой энергии, испускаемой атомом.
Положим, что электрон упадет с n2-ой орбиты на n1 -тую. Тогда потерянная энергия определяется равенством:
En1
– En2
= h
или
=
|
(7) |
где En2 и En1 - энергия атома при положении электрона на n2-ой и
n1 -ой орбите;
- частота излучения.
Это так называемое условие частот Бора.
Квантовая теория Бора строения атома сыграла важную роль в развитии физики. Количественно и весьма наглядно объяснив строение атома, она наметила правильный подход к изучению внутриатомных процессов.
Но использовать теорию Бора для расчета спектров многоэлектронных атомов оказалось невозможным. Ограниченность квантовой теории Бора обусловлена тем, что базируясь на к в а н т о в ы х исходных положениях, она пользуется законами к л а с с и ч е с к о й механики для описания движений электронов в атоме.
В современной же квантовой механике движение электронов в атоме характеризуется не одним, а четырьмя квантовыми числами. Да и сам электрон не считается сосредоточенным в одном месте, а рассматривается как электронное облако переменной плотности, причем плотность облака в любой точке объема атома пропорциональна в е р о я т н о с т и нахождения электрона в этой точке. Но законы, установленные квантовой механикой, уже не обладают той простотой и наглядностью, которая свойственна теории Бора.