Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
781
Добавлен:
20.04.2015
Размер:
7.13 Mб
Скачать

Работа по перемещению заряда в электрическом поле. Потен­циал

Теперь известно, что на заряд, помещенный в электрическое поле, действует сила. Следовательно, перемещение заряда в элек­трическом поле будет сопровождаться работой

dA = Fdl

dA > 0 в случае, если работа совершается силами поля;

dA < 0 в случае, если работа совершается внешними силами против сил поля.

Рассмотрим перемещение пробного заряда Q0 из точки 1 в точку 2 в поле сил, создаваемых зарядом Q.

Поле сил – центральное (рис. 73). Работа на пути dl будет равна

Отсюда работа по перемещению заряда из точки 1 в точку 2

Если работа совершается внешними силами, то

Электростатическое поле является потенциальным. Это значит, что работа по перемещению заряда не зависит от пути, по которому перемещается заряд, а зависит только от начального и конечного положения заряда.

Тело, находящееся в потенциальном поле сил, обладает по­тенциальной энергией, за счет которой совершается работа силами поля. Следовательно, полученное выражение для работы можно представить как разность потенциальных энергий заряда Q0 в поле сил, созданном зарядом Q

Таким образом, потенциальная энергия в каждой точке поля зависит от величины пробного заряда Q0. Но если взять отношение W/Q0, то оно будет зависеть только от точки поля, и не будет зависеть от величины помещенного в эту точку за­ряда. Отношение = φ называют потенциалом поля.

Потенциалом электрического поля называется физическая величина, равная отношению потенциальной энергии, которую приобретает положи­тельный заряд Q0, если его переместить из в данную точку поля, к величине этого заряда

.

Из равенства А12 = -А21 следует другое определение.

Потенциалом поля называется физическая величина, чис­ленно равная работе, которую совершают силы поля над единичным положительным зарядом, при удалении его из данной точки поля в бесконечность.

Потенциал – величина скалярная. При суперпозиции (нало­жении) электрических полей потенциал суммарного электрического поля определяется как алгебраическая сумма потенциалов налагае­мых полей

Выражение для работы по перемещению заряда из точки с потен­циалом φ1в точку с потенциалом φ2 имеет вид

A12 = Q (φ2 – φ1).

Работа измеряется в Дж или эВ. 1эВ = 1,6 ∙10-19 Дж.

Для наглядного изображения поля вместо линий напряжен­ности (силовых линий) можно воспользоваться поверхностями рав­ного потенциала или эквипотенциальными поверхностями. Экви­потенциальная поверхность – это такая поверхность, все точки которой имеют одинаковый потенциал. Если потенциал задан как функция координат x, y, z, то уравнение эквипотенциальной поверхности имеет вид:

φ (x,y,z) = const.

Эквипотенциальные линии – линии, образующиеся от пересечения эквипотенциальной поверхности плоскостью проводятся так, что направление нормали к ним совпадает с направлением вектора в той же точке (рис.74).

Эквипотенциальную поверхность можно провести через лю­бую точку поля. Следовательно, таких поверхностей может быть бесконечное множество.

Рис. 74

Условились, однако, проводить их таким образом, чтобы разность потенциалов для двух соседних эквипотенциальных по­верхностей была всюду одна и та же. Тогда по их густоте можно судить о величине напряженности поля.

Соседние файлы в папке физика