
- •Федеральное агентство по образованию
- •Содержание
- •Глава 1. Статистика как наука и методы статистического исследования
- •1.1. История развития статистики и ее задачи на современном этапе
- •1.2. Предмет и метод статистики
- •1.3. Структура отраслей статистической науки
- •1.4. Организация современной системы статистики рф
- •1.5. Статистическая информация и ее распространение
- •1.6. Статистическое наблюдение
- •1.6.1. Понятие о статистическом наблюдении
- •1.6.2. Подготовка статистического наблюдения
- •1.6.3. Формы, виды и способы наблюдения
- •Контрольные вопросы и задания
- •Глава 2. Сводка и группировка статистических данных
- •2.1. Статистическая сводка, ее задачи и виды
- •2.2. Группировка статистических данных
- •2.3. Механизм проведения группировки данных
- •2.4. Статистические ряды распределения
- •2.5. Наглядное представление статистических данных
- •Название таблицы (общий заголовок)
- •Объем основных услуг связи рф
- •Распределение предприятий, выставивших акции на чековые аукционы рф в 2006 г., по величине уставного капитала (цифры условные)
- •Группировка предприятий, выставивших акции на чековые аукционы рф в 2006 г., по величине уставного капитала числу занятых (цифры условные)
- •Распределение акций среди работников приватизированных предприятий промышленности
- •Распределение акций среди работников приватизированных предприятий промышленности
- •Структура населения г. Москвы
- •Потребление кофе на душу населения, кг
- •Структура возрастного состава населения г. Москвы
- •Вопросы для самоконтроля
- •Глава 3. Абсолютные, относительные и средние величины
- •3.1. Абсолютные величины
- •3.2. Относительные показатели
- •3.3. Средние величины
- •Степенные средние
- •Структурные средние
- •Вопросы для самоконтроля
- •Глава 4. Вариация признака
- •4.1. Вариация количественного признака
- •4.2. Дисперсия альтернативного признака
- •4.3. Правило сложения дисперсий
- •Вопросы для самоконтроля
- •Глава 5. Выборочное наблюдение
- •5.1. Понятие о выборочном наблюдении, сфера его применения
- •5.2. Ошибки выборки
- •Распределение вероятности в выборках в зависимости от величины t и объема выборки n
- •5.3. Объем выборки
- •Вопросы для самоконтроля
- •Глава 6. Анализ рядов динамики
- •6.1. Понятие о рядах динамики их виды
- •6.2. Показатели анализа рядов динамики
- •6.3. Методы анализа основной тенденции развития в рядах динамики и прогнозирование
- •6.4. Изучение сезонных колебаний
- •Вопросы для самоконтроля
- •Глава 7. Индексы
- •7.1. Понятие и виды индексов
- •7.2. Методы исчисления индексов
- •Основные формулы исчисления индивидуальных и сводных индексов
- •7.3. Индексы цен, их использование и экономический смысл
- •7.4. Индексы средних величин
- •Вопросы для самоконтроля
- •Глава 8. Изучение взаимосвязи социально-экономических явлений
- •8.1. Взаимосвязи между явлениями и их типы
- •8.2. Статистические методы моделирования связи
- •8.3. Однофакторный линейный корреляционно-регрессионный анализ
- •8.4. Нелинейные и многофакторные модели регрессии
- •8.5. Непараметрические показатели связи
- •Вопросы для самоконтроля
- •Медведева т.Ю. Статистика (общая теория статистики)
8.5. Непараметрические показатели связи
В статистической практике встречаются такие ситуации, когда значения факторных и результативных признаков не могут быть выражены численно. В этом случае для измерения тесноты зависимости необходимо использовать так называемые непараметрические методы.
Наибольшее распространение имеют ранговые коэффициенты корреляции, в основу которых положен принцип нумерации значений статистического ряда. При использовании коэффициентов корреляции рангов коррелируют не сами значения показателей х и у, а только номера их мест, которые они занимают в каждом ряду значений. В этом случае номер каждой отдельной единицы будет ее рангом.
Коэффициенты корреляции, основанные на использовании ранжированного метода, были предложены К. Спирмэном и М. Кендэлом.
Коэффициент корреляции рангов Спирмэна (р) основан на рассмотрении разности рангов значений результативного и факторного признаков и может быть рассчитан по формуле
где d = Nx - Ny , т.е. разность рангов каждой пары значений х и у;
n - число наблюдений.
Ранговый
коэффициент корреляции Кендэла
()
можно определить по формуле:
где S = P + Q.
К непараметрическим методам исследования можно также отнести коэффициент ассоциации kас и коэффициент контингенции kкон, которые используются, если, например, необходимо исследовать тесноту зависимости между качественными признаками, каждый из которых представлен в виде альтернативных признаков.
Для определения этих коэффициентов создается расчетная таблица (таблица «четырех полей»), где статистическое сказуемое схематически представлено в следующем виде (табл. 8.2).
Таблица 8.2
Признаки |
А (да) |
А (нет) |
Итого |
В (да) |
a |
b |
a + b |
В (нет) |
с |
d |
c + d |
Итого |
a + c |
b + d |
n |
Здесь
а, b, c, d - частоты взаимного сочетания
(комбинации) двух альтернативных
признаков
;
n - общая сумма частот.
Коэффициент ассоциации можно рассчитать по формуле:
Коэффициент ассоциации изменяется от -1 до +1. Чем ближе его значение к +1 или к -1, тем сильнее связаны между собой изучаемые признаки.
Коэффициент контингенции рассчитывается по формуле:
Нужно иметь в виду, что для одних и тех же данных коэффициент контингенции (изменяется от -1 до +1) всегда меньше коэффициента ассоциации.
Если необходимо оценить тесноту связи между альтернативными признаками, которые могут принимать любое число вариантов значений, применяется коэффициент взаимной сопряженности Пирсона (КП).
Для исследования такого рода связи первичную статистическую информацию располагают в форме таблицы (табл. 8.3).
Таблица 8.3
Признаки |
A |
B |
C |
Итого |
D |
m11 |
m12 |
m13 |
∑m1j |
E |
m21 |
m22 |
m23 |
∑m2j |
F |
m31 |
m32 |
m33 |
∑m3j |
Итого |
∑mj1 |
∑mj2 |
∑mj3 |
П |
Здесь mij - частоты взаимного сочетания двух атрибутивных признаков; П - число пар наблюдений.
Коэффициент взаимной сопряженности Пирсона определяется по формуле
где
-
показатель средней квадратической
сопряженности:
Коэффициент взаимной сопряженности изменяется от 0 до 1.
Наконец, следует упомянуть коэффициент Фехнера, характеризующий элементарную степень тесноты связи, который целесообразно использовать для установления факта наличия связи, когда существует небольшой объем исходной информации. Данный коэффициент определяется по формуле
где na - количество совпадений знаков отклонений индивидуальных величин от их средней арифметической;
nb - соответственно количество несовпадений.
Коэффициент
Фехнера может изменяться в пределах
-1,0
kф
+1,0.