
- •Федеральное агентство по образованию
- •Содержание
- •Глава 1. Статистика как наука и методы статистического исследования
- •1.1. История развития статистики и ее задачи на современном этапе
- •1.2. Предмет и метод статистики
- •1.3. Структура отраслей статистической науки
- •1.4. Организация современной системы статистики рф
- •1.5. Статистическая информация и ее распространение
- •1.6. Статистическое наблюдение
- •1.6.1. Понятие о статистическом наблюдении
- •1.6.2. Подготовка статистического наблюдения
- •1.6.3. Формы, виды и способы наблюдения
- •Контрольные вопросы и задания
- •Глава 2. Сводка и группировка статистических данных
- •2.1. Статистическая сводка, ее задачи и виды
- •2.2. Группировка статистических данных
- •2.3. Механизм проведения группировки данных
- •2.4. Статистические ряды распределения
- •2.5. Наглядное представление статистических данных
- •Название таблицы (общий заголовок)
- •Объем основных услуг связи рф
- •Распределение предприятий, выставивших акции на чековые аукционы рф в 2006 г., по величине уставного капитала (цифры условные)
- •Группировка предприятий, выставивших акции на чековые аукционы рф в 2006 г., по величине уставного капитала числу занятых (цифры условные)
- •Распределение акций среди работников приватизированных предприятий промышленности
- •Распределение акций среди работников приватизированных предприятий промышленности
- •Структура населения г. Москвы
- •Потребление кофе на душу населения, кг
- •Структура возрастного состава населения г. Москвы
- •Вопросы для самоконтроля
- •Глава 3. Абсолютные, относительные и средние величины
- •3.1. Абсолютные величины
- •3.2. Относительные показатели
- •3.3. Средние величины
- •Степенные средние
- •Структурные средние
- •Вопросы для самоконтроля
- •Глава 4. Вариация признака
- •4.1. Вариация количественного признака
- •4.2. Дисперсия альтернативного признака
- •4.3. Правило сложения дисперсий
- •Вопросы для самоконтроля
- •Глава 5. Выборочное наблюдение
- •5.1. Понятие о выборочном наблюдении, сфера его применения
- •5.2. Ошибки выборки
- •Распределение вероятности в выборках в зависимости от величины t и объема выборки n
- •5.3. Объем выборки
- •Вопросы для самоконтроля
- •Глава 6. Анализ рядов динамики
- •6.1. Понятие о рядах динамики их виды
- •6.2. Показатели анализа рядов динамики
- •6.3. Методы анализа основной тенденции развития в рядах динамики и прогнозирование
- •6.4. Изучение сезонных колебаний
- •Вопросы для самоконтроля
- •Глава 7. Индексы
- •7.1. Понятие и виды индексов
- •7.2. Методы исчисления индексов
- •Основные формулы исчисления индивидуальных и сводных индексов
- •7.3. Индексы цен, их использование и экономический смысл
- •7.4. Индексы средних величин
- •Вопросы для самоконтроля
- •Глава 8. Изучение взаимосвязи социально-экономических явлений
- •8.1. Взаимосвязи между явлениями и их типы
- •8.2. Статистические методы моделирования связи
- •8.3. Однофакторный линейный корреляционно-регрессионный анализ
- •8.4. Нелинейные и многофакторные модели регрессии
- •8.5. Непараметрические показатели связи
- •Вопросы для самоконтроля
- •Медведева т.Ю. Статистика (общая теория статистики)
6.2. Показатели анализа рядов динамики
Для количественной оценки динамики проводят расчет таких показателей, как абсолютный прирост, темп роста, темп прироста, темп наращивания, абсолютное значение 1% прироста, средний уровень ряда динамики.
В основе расчета показателей ряда динамики лежит сравнительный анализ уровней ряда либо с постоянной, либо с переменной базой сравнения. При постоянной базе сравнения каждый уровень ряда сравнивается с одним и тем же показателем (уровнем), принятым за базу сравнения (у0). В этом случае получают базисные показатели. При переменной базе сравнения каждый уровень ряда сравнивают с предыдущим уровнем (yi-1) получают цепные показатели.
Таким образом, выделяют следующие аналитические показатели динамики:
1. Абсолютный прирост – это разность двух уровней ряда в исходных единицах измерения, которая характеризует абсолютное изменение уровня ряда за определенный промежуток времени:
-
базисный:
;
-
цепной:
.
Абсолютный прирост может иметь отрицательное значение, если уровень изучаемого периода ниже уровня базисного периода или предшествующего.
Между цепными и базисным абсолютным приростом существует взаимосвязь: сумма цепных абсолютных приростов равна базисному абсолютному приросту последнего уровня ряда динамики:
2. Темп роста – это отношение двух уровней ряда, выраженное в процентах. Он характеризует относительное изменение уровня динамического ряда за какой-либо период времени:
-
базисный:
;
-
цепной:
.
Если темп роста > 100%, то идет увеличение изучаемого уровня по сравнению с базисным или предыдущим показателем и наоборот.
Напомним,
что средний темп роста определяется по
формуле средней геометрической. Поскольку
средний темп роста представляет собой
средний коэффициент роста, выраженный
в процентах (),
то средний темп роста определяется по
формуле:
.
Между базисным и цепными коэффициентами роста существует взаимосвязь – произведение последовательных цепных коэффициентов роста равно базисному коэффициенту роста последнего уровня ряда динамики:
.
3. Темп прироста – характеризует абсолютный прирост в относительных величинах:
-
базисный:
или
;
-
цепной:
или
.
Если уровни ряда динамики сокращаются, то соответствующие показатели темпов прироста будут отрицательными, т.к. они характеризуют уменьшение ряда динамики в %.
Средний темп прироста определяется по формуле:
.
4. Темп наращивания – показывает в экономике наращивание во времени экономического потенциала. Вычисляется делением цепных абсолютных приростов на уровень, принятый за постоянную базу сравнения:
.
5. Абсолютное значение одного процента прироста – применяется для сравнения абсолютного прироста и темпа прироста за одни и те же периоды времени, и показывает, какое абсолютное значение скрывается за относительным показателем – одним процентом прироста:
.
6. Средний уровень ряда динамики – характеризует обобщенную величину абсолютных уровней.
Методы расчета среднего уровня интервального и моментного рядов динамики различны.
Для интервальных рядов динамики средний уровень за период времени определяется по формуле средней арифметической:
а) при равных интервалах применяется средняя арифметическая простая:
.
б) при неравных интервалах применяется средняя арифметическая взвешенная:
.
Средний уровень моментного ряда динамики с равноотстоящими датами определяется по формуле средней хронологической простой:
.
Для моментных рядов с неравноотстоящими датами расчет среднего уровня ряда производится по формуле средней хронологической взвешенной:
.