
- •1. Элементы линейной алгебры (14 часов)
- •1. Элементы линейной алгебры
- •1.1. Система линейных алгебраических уравнений
- •Определение 1
- •Определение 2
- •Определение 3
- •Определение 4
- •Определение 5
- •Определение 6
- •Определениe 7
- •Теорема 1
- •Доказательство
- •Определение 1
- •Определение 2
- •Теорема 2
- •Определение 3
- •Определение 4
- •Теорема 3
- •Пример
- •Решение
- •Теорема 4
- •1.3. Свойства определителей
- •Определение 1
- •Свойство 1
- •Свойство 2
- •Свойство 3
- •Свойство 4
- •Свойство 5
- •Свойство 7
- •Определение 2
- •Определение 3
- •Определение 4
- •Свойство 8
- •Определение 5
- •Определение 6
- •Пример 1
- •Решение
- •Свойство 9
- •Теорема разложения
- •Пример 2
- •Решение
- •1 способ
- •2 способ
- •Свойство 10
- •1.4. Матрицы. Действия с матрицами
- •Сложение матриц
- •Умножение на число
- •Умножение матриц
- •Пример
- •Решение
- •Определение
- •Теорема
- •1.5. Обратная матрица
- •Определение 1
- •Теорема 1
- •Доказательство
- •Определение 2
- •Определение 3
- •Определение 4
- •Теорема 2
- •Доказательство
- •Пример
- •Решение
- •Проверка
- •1.6. Матричные уравнения. Матричная запись СЛАУ. Формулы Крамера
- •Теорема 1
- •Доказательство
- •Теорема 2
- •Доказательство
- •Пример 1
- •Решение
- •Теорема 1.2.4
- •Доказательство
- •Теорема 3
- •Доказательство
- •Пример 2
- •Решение
- •1.7. Расширенная матрица СЛАУ. Элементарные преобразования
- •Определение 1
- •Определение 2
- •1.8. Метод Гаусса
- •1. Расширенная матрица СЛАУ приведена к виду:
- •Пример 1
- •Решение
- •2. Расширенная матрица СЛАУ приведена к виду:
- •Пример 2
- •Решение
- •3. Расширенная матрица СЛАУ приведена к виду:
- •Пример 3
- •Решение
- •1.9. Ранг матрицы. Теорема Кронекера – Капелли
- •Определение 1
- •Пример 1
- •Решение
- •Определение 2
- •Преобразования, не меняющие ранг матрицы:
- •Пример 2
- •Решение
- •Теорема Кронекера – Капелли
- •Пример 1
- •Решение
- •Пример 2
- •Решение
- •Пример 3
- •Решение
- •1.10. Однородные СЛАУ
- •Определение 1
- •Теорема 1 (теорема Кронекера-Капелли для однородной СЛАУ )
- •Пример 1
- •Решение
- •Определение 2
- •Пример 2
- •Решение
- •Теорема 2
- •Пример 3
- •Решение
- •1.11. Определение линейного пространства
- •Определение 1
- •Пример 1
- •Пример 2
- •Пример 3
- •Определение 2
- •1.12. Линейная зависимость и независимость векторов в
- •Определение 1
- •Определение 2
- •Определение 3
- •Пример 1
- •Решение
- •Пример 2
- •Решение
- •Теорема 1
- •Теорема 2
- •1.13. Размерность линейного пространства. Базис
- •Определение 1
- •Теорема 1
- •Доказательство
- •Определение 2
- •Теорема 2
- •Доказательство
- •Теорема 3
- •Доказательство
- •Пример
- •Решение
- •Евклидово пространство. Нормированное пространство. Ортонормированный базис
- •Определение 1
- •Определение 2
- •Определение 3
- •Определение 4
- •Определение 5
- •Теорема
- •(Неравенство Коши – Буняковского)
- •Доказательство
- •Теорема 2
- •Доказательство
- •Определение 6
- •Теорема 3
- •Доказательство
- •Определение 7
- •1. Элементы линейной алгебры (12 часов).
Пример 2
|
|
|
Решить матричное уравнение: |
|
|
|
3 −1 |
−1 −2 |
|
|
|
|
|
|||||||||||||||||||||||||||
|
|
|
X |
|
|
|
= |
4 |
|
0 |
|
. |
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
3 |
|
0 |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Решение |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
−1 |
|
|
|
|
−1 −2 |
|
|
|||||||
|
|
|
Выпишем матрицы A |
|
и |
|
B : |
|
2×2 |
|
3×2 |
= |
|
4 |
0 |
|
. Так как определитель |
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
A |
= |
2 |
|
3 |
, |
B |
|
|
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
1 |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A |
−1 |
|
1 |
3 |
|
1 |
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
=11 ≠ 0 , |
находим обратную матрицу: |
|
= |
|
|
|
|
|
|
. Тогда решение матричного |
|||||||||||||||||||||||||||||
|
|
11 |
−2 |
|||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
−1 −2 |
3 |
1 |
|
1 |
|
|
1 −7 |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
X3×2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
уравнения имеет вид: |
= |
|
|
|
|
|
4 |
|
|
0 |
|
|
|
|
|
|
= |
|
|
|
12 |
4 |
. |
|||||||||||||||||
11 |
|
|
|
11 |
||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
1 |
|
|
−2 3 |
|
|
−2 |
3 |
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
1.7. Расширенная матрица СЛАУ. Элементарные преобразования |
||||||||||||||||||||||||||||||||||||
|
|
|
Рассмотрим систему m линейных алгебраических уравнений с n неизвестными (СЛАУ): |
|||||||||||||||||||||||||||||||||||||
a11 x1 + a12 x2 +K+ a1n xn = b1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
a21 x1 + a22 x2 +K+ a2n xn |
|
= b2 |
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
LLLLLLLLLLLL |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
a |
x |
+ a |
m2 |
x |
2 |
+K+ a |
mn |
x |
n |
= b |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
m1 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
Определение 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
Если к матрице системы приписать справа столбец свободных членов, то получится |
|||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
a11 |
a12 |
|
K a1n |
|
|
b1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
a |
a |
|
K a |
2n |
|
|
b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
матрица вида: |
|
|
21 |
|
|
22 |
|
|
|
|
|
|
|
|
|
|
2 |
|
. Эта матрица называется расширенной матрицей |
|||||||||||||||||||||
|
K |
K K |
|
K |
|
K |
||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
a |
|
|
|
K a |
|
|
|
b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
m1 |
|
m2 |
|
|
|
|
|
|
|
m n |
|
|
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
СЛАУ.
ЗАМЕЧАНИЕ
Расширенная матрица представляет собой краткую запись системы.
Определение 2
Элементарными преобразованиями называются такие преобразования расширенной матрицы, которые не меняют множество решений системы. Знак элементарного преобразования: или ~.
Кэлементарным преобразованиям относятся:
1.перемена местами строк;
20