- •Глава II понятие
- •§ 1. Понятие как форма мышления
- •Содержание и объем понятия
- •Закон обратного отношения между объемами и содержаниями понятий
- •§ 2. Отношения между понятиями
- •Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
- •Типы несовместимости: соподчинение, противоположность, противоречие
- •§ 3. Определение понятий
- •Правила явного определения. Ошибки, возможные в определении
- •Неявные определения
- •Определение через аксиомы
- •Использование определений понятий в процессе обучения
- •Приемы, сходные с определением понятий
- •§ 4. Деление понятий. Классификация
- •Правила деления понятий
- •Виды деления: по видообразующему признаку и дихотомическое деление
- •Классификация
- •Использование естественных классификаций в школах и педагогических средних и высших учебных заведениях
- •§ 5. Ограничение и обобщение понятий
- •Задачи к теме “Понятие”
- •II. Определить отношения между следующими понятиями:
Неявные определения
В отличие от явных определений, имеющих структуру Dfd= Dfn, в неявных определениях на место Dfп просто подставляется контекст, или набор аксиом, или описание способа построения определяемого объекта. Выделяют, по крайней мере, три вида.
Контекстуальное определение позволяет выяснить содержание незнакомого слова, выражающего понятие, через контекст, не прибегая к словарю для перевода (если текст на иностранном языке) или к толковому словарю (если текст дан на родном языке). Так, контекст помогает выяснить, что “заткнуть за пояс” означает “превзойти кого-либо”: “Стукнуло ребяткам десять лет, отдала их мать в науку: скоро они научились грамоте и боярских и купеческих детей за пояс заткнули - никто лучше их не сумеет ни прочесть, ни написать, ни ответу дать” (А. Афанасьев); “Стареешь ты, Фишка. - Старею? - удивился тот и хвастливо сказал: - Я еще молодого за пояс заткну!” (Г. Марков).
Понятие “золотая середина” - образ поведения, при котором избегают крайностей, рискованных решений, - отражено в следующих контекстах: “Все б - в крайностях бродить уму, а середина золотая все не давалася ему!” (А. Блок); “Кареты разъехались. Мать даже всплакнула: - Всегда вы умудряетесь доводить страсти до критических крайностей. Ах, Фике, как хорошо знать золотую середину...” (В. Пикуль).
При изучении синонимов “пища”, “продовольствие”, “еда”, “питание”, “корм” (для животных) предлагаются пословицы:
“Хлеб - всему голова” и “Грибы не сыть, а как с ними быть?”. Затем учащимся младших классов дается такое задание:
“Попытайтесь догадаться, что в старину означало слово “сыть”?
44
И дети должны с помощью контекста определить смысл требуемого слова “сыть”'.
Индуктивные определения - такие, в которых определяемый термин используется в выражении понятия, которое ему приписывается в качестве его смысла. Примером индуктивного определения является определение понятия “натуральное число” с использованием самого термина “натуральное число”:
1.1- натуральное число.
2. Если п -натуральное число, то п + 1 - натуральное число.
3. Никаких натуральных чисел, кроме указанных в пунктах 1 и 2, нет.
С помощью этого индуктивного определения получается натуральный ряд чисел: 1, 2, 3,4... Таков алгоритм построения ряда натуральных чисел.
Определение через аксиомы
В современной математике и в математической логике широко применяется так называемый аксиоматический метод. Приведем пример2. Пусть дана система каких-то элементов (обозначаемых х, у, z...), и между ними установлено отношение, выражаемое термином “предшествует”. Не определяя ни самих объектов, ни отношения “предшествует”, мы высказываем них следующие утверждения (аксиомы):
1. Никакой объект не предшествует сам себе.
2. Если х предшествует y, а у предшествует z, то x предшествует z.
Так с помощью двух аксиом определены системы объектов вида “x предшествует у”. Например, пусть объектами х, являются люди, а отношение между х и у представляет собой “х старше у”.Тогда выполняются утверждения 1 и 2. Если объекты х, у,z - действительные числа, а отношение “х предшествует у” представляет собой “х меньше у”, то утверждения 1 и 2 также выполняются. Утверждения (т. е. аксиомы) 1 и 2 определяют системы объектов с одним отношением.
____________________________
'Львов М.Р. Словарик синонимов и антонимов. М., 1992. С. 28.
2См : Новиков П.С. Элементы математической логики. М., 1973.
45
