
- •УТВЕРЖДАЮ
- •Генеральный директор
- •ООО «ГИА «Иннотер»,
- •_________В.В. Лавров
- •« 15 » февраля 2013 г.
- •Аналитический обзор космических программ ДЗЗ России и зарубежных стран
- •Директор по инновациям ООО «ГИА» Иннотер» _____________В.Н. Лавров
- •Москва
- •Реферат
- •Отчет 108 с., 1 ч., 36 источников, 14 иллюстраций.
- •Содержание
- •Список иллюстраций
- •Мониторинг
- •Обозначения и сокращения
- •бортовой измерительный комплекс;
- •географическая информационная система;
- •дистанционное зондирование Земли;
- •исходные данные;
- •космический аппарат;
- •космическая информация;
- •космический комплекс;
- •космическая навигационная система;
- •космическая система;
- •летные испытания;
- •НКПОР
- •наземный комплекс приема, обработки и распространения;
- •наземный комплекс управления;
- •орбитальная группировка;
- •опытно-конструкторская работа;
- •ракета космического назначения;
- •ракетно-космическая техника;
- •рабочее место оператора;
- •ракета-носитель;
- •средняя квадратическая погрешность;
- •техническое задание;
- •технико-экономическое обоснование;
- •федеральная космическая программа;
- •цифровая модель рельефа;
- •чрезвычайная ситуация.
- •Введение
- •Содержанием исследований, результаты которых приведены в настоящем обзоре, является:
- •Создание корпоративных космических систем и комплексов должно основываться на современной элементной базе и новейших конструктивных решениях, а номенклатура и качество получаемых данных должны соответствовать мировому уровню.
- •1 Обзор космических программ ДЗЗ зарубежных стран
- •1.1 Космическая программа США
- •1.1.1 Основы космической политики США
- •Основные идеи новой космической политики:
- •Основными целями космической политики США являются:
- •1.1.2 Положение о стратегических намерениях национальной системы геопространственной разведки США
- •Рисунок 1 - Космический снимок - растровое изображение
- •Рисунок 2 - Идентификация целей и объектов
- •Рисунок 3 - Отображение оперативной обстановки в реальном масштабе времени
- •1.1.3 Космическая военная программа видовой разведки
- •1.1.4 Коммерческая космическая программа США
- •Рисунок 4 - Космический аппарат WorldView-1
- •Рисунок 5 - Космический аппарат GeoEye-1
- •Следующим логическим шагом развития рынка космических средств ДЗЗ является запуск КА со сверхвысокой разрешающей способностью (до 0.25 м). Ранее изображения с таким разрешением обеспечивали только военные спутники США и СССР.
- •1.2 Космические программы Европейских стран
- •1.2.1 Франция
- •Космический сегмент системы SPOT в настоящее время состоит из четырех КА (SPOT 2, -4, -5 и -6). Наземный сегмент включает Центр управления и эксплуатации КА, сеть станций приема информации и центров обработки и распространения данных.
- •Рисунок 6 - КА SPOT 5
- •1.2.2 Германия
- •Рисунок 7 - Спутники TerraSAR-X и Tandem-X
- •Рисунок 8 - Архитектура орбитального сегмента системы SAR-Lupe
- •Система SAR-Lupe будет состоять из орбитальной группировки, включающей пять легких спутников, и наземного сегмента, обеспечивающего управление спутниками, а также получение, обработку и использование собираемой с их помощью информации.
- •1.2.3 Италия
- •Итальянская программа космических исследований базируется на использовании ракет-носителей США ("Скаут"), Европейской организации по разработке ракет-носителей ("Европа-1") и Европейского космического агентства ("Ариан").
- •1.2.4 Великобритания
- •Рисунок 9 - Снимок с разрешением 2.8 м, полученный миниспутником TOPSAT-1
- •Первый алжирский микроспутник ALSAT-1 был также изготовлен в SSTL.
- •1.2.5 Испания
- •Испания принимает участие и в создании глобальной европейской системы спутникового наблюдения оборонного назначения.
- •1.3 Космические программы других стран
- •1.3.1 Япония
- •Рисунок 10 - 3D-модель территории штата Гуджарат, построенная по данным Cartosat-1
- •Индия готова распространять спутниковые изображения метрового разрешения, полученные с помощью Cartosat-2, по ценам ниже рыночных и в перспективе планирует запустить новый космический аппарат с пространственным разрешением до 0,5 метра.
- •1.3.2 Израиль
- •1.3.3 Китай
- •Рисунок 11 – КА CBERS-01
- •19 сентября 2007 года в Китае запущен третий китайско-бразильский спутник ДЗЗ CBERS-2B. Спутник выведен на утреннюю солнечно-синхронную орбиту высотой 748х769 км, наклонением 98.54 градусов, время пересечения экватора 10:30.
- •1.3.4 Корея
- •1.3.5 Канада
- •Канада в 1990 г. создала Канадское космическое агентство, под руководством которого ведутся работы по ракетно-космической тематике.
- •Рисунок 12 - RADARSAT в космосе глазами художника
- •1.3.6 Австралия
- •1.3.7 Другие страны
- •1.4 Космические программы стран СНГ
- •1.4.1 Белоруссия
- •Таблица 1. Основные характеристики КА «Канопус-В» и БКА
- •Размер КА, м×м
- •Масса КА
- •Масса полезной нагрузки, кг
- •Орбита:
- •высота, км
- •наклонение, град
- •период обращения, мин
- •время пересечения экватора, час
- •Период повторного наблюдения, сутки
- •Среднесуточная мощность, Вт
- •Срок активного существования, лет
- •Космические аппараты «Канопус-В» и БКА предназначены для решения следующих задач:
- •- высокооперативного наблюдения.
- •1.4.2 Украина
- •1.4.3 Казахстан
- •2 Космическая программа России
- •2.1 Основные положения Федеральной космической программы России на 2006-2015 годы
- •Основными задачами Программы являются:
- •Сроки и этапы реализации Программы – 2006 – 2015 годы.
- •На первом этапе (в период до 2010 года), в части дистанционного зондирования Земли создаются:
- •Приоритетными направлениями космической деятельности, способствующими достижению стратегических целей, являются:
- •Программные мероприятия включают мероприятия, финансируемые за счет бюджетных средств, и мероприятия, выполняемые за счет средств, инвестируемых в космическую деятельность негосударственными заказчиками.
- •Мероприятия, финансируемые за счет бюджетных средств, включают работы, предусмотренные в следующих разделах:
- •раздел I – «Научно-исследовательские и опытно-конструкторские работы»;
- •При реализации Программы будут достигнуты следующие результаты:
- •б) увеличена периодичность обновления данных гидрометеорологического наблюдения до 3 часов для средневысотных космических аппаратов и до реального масштаба времени для геостационарных космических аппаратов, что обеспечит:
- •2.2 Анализ космических систем ДЗЗ.
- •Рисунок 13 - Орбитальная группировка КА ДЗЗ на период 2006-2015 годы
- •По существу, основными космическими средствами ДЗЗ, разработанными в период до 2015 года будут КА «Канопус-В» оперативного мониторинга техногенных и природных чрезвычайных ситуаций и КА «Ресурс-П» оперативного оптико-электронного наблюдения.
- •КА «Канопус-В» №1, запуск которого состоялся 22 июля 2012 года, включает:
- •Комплекс «Ресурс-П» является продолжением отечественных средств ДЗЗ высокого разрешения, используемых в интересах социально-экономического развития РФ. Он предназначен для решения следующих задач:
- •- подсистема «Арктика-МС2» из четырех КА для обеспечения подвижной правительственной связи, управления воздушным движением и ретрансляции навигационных сигналов (разработчик ОАО «ИСС им. М.Ф. Решетнева»).
- •2.3 Развитие наземного комплекса приема, обработки, хранения и распространения КИ ДЗЗ
- •Функциональная схема интегрированной спутниковой системы ДЗЗ показана на Рисунке 14.
- •Рисунок 14 - Интегрированная спутниковая система ДЗЗ
- •3 Анализ «Концепции развития российской космической системы дистанционного зондирования Земли на период до 2025 года»
- •Важным разделом Концепции являются предложения, обеспечивающие повышение эффективности использования космической информации в России.
- •Главными проблемами, определяющими эффективность использования космической информации в России являются:
- •9. Разработать и ввести в эксплуатацию наземные и авиационные средства валидации результатов тематической обработки космической информации.
- •4 Технико-экономическое обоснование принципов финансирования при создании космических систем ДЗЗ
- •Заключение
- •Выполненные исследования позволяют сделать следующие выводы:
- •Список использованных источников
- •2 Россия разрабатывает новые радиолокационные спутники. Москва. РИА Новости. Юрий Зайцев, эксперт Института космических исследований, 2005 г."
- •3 А.Кучейко. Новая политика США в области коммерческих средств ДЗЗ. Новости космонавтики, №6, 2003 г.
- •4 В. Чуларис. Национальная политика США в области использования космического пространства. Зарубежное военное обозрение №1, 2007 г.
- •6 В. Чуларис. Геоинформационное обеспечение ВС США. Зарубежное военное обозрение, №10, 2005 г.
- •7 Космической разведке США поставлены новые задачи. Наука, 03.02.06
- •8 США создали на орбите крупнейшую за всю историю группировки спутников видовой разведки. Известия науки. 03.02.2006 г.
- •9 А. Андронов. Спутники, доступные террористам. «Независимое военное обозрение», 1999 г.
- •10 В.Иванченко. Иконос Зоркий Глаз. Журнал «КОМПЬЮТЕРРА», 06.09.2000 г.
- •11 М. Рахманов. Спутниковая разведка: новые тенденции развития. «Издание о высоких технологиях C.NEWS», 2006 г.
- •12 А. Копик. Запущен новый коммерческий «шпион». «Новости космонавтики», №6, 2003г.
- •13 М.Рахманов. Спутниковое зондирование: перемены неизбежны. «Издание о высоких технологиях C.NEWS», 2006 г.
- •16 Ю.Б. Баранов. Рынок данных ДЗЗ в России. Журнал «Пространственные данные», №5, 2005 г.
- •17 Французская разведка устремляется в космос. Наука, 27.12.04.
- •18 Радарные снимки: Германия вырывается в лидеры. Наука, 20.03.06.
- •19 Максим Рахманов «Германия запускает систему космического шпионажа», Наука, CNews, 2003 г.
- •20 А.Кучейко. Всепогодная система космической разведки и наблюдения: взгляд из Италии. «Новости космонавтики», №5, 2002г.
- •21 А.Кучейко. Япония создала крупнейшую систему космической разведки. «Новости космонавтики», №4, 2007 г.
- •22 Японская ракета вывела тяжелый спутник ALOS на орбиту. Наука, 24.01.06.
- •28 Радарный спутник: Канада не дает России ослепнуть. Наука, 2005 г.
- •29 Тайваньский конфликт продолжится в космосе? «Издание о высоких технологиях C.NEWS», 2006 г.
- •35 Госкосмос и частники: соперники или партнеры? Наука, 2005 г.

Геоинновационноеагентство «Иннотер»
аппаратура для точного определения параметров орбиты DORIS, а на третьем КА была установлена попутная американская аппаратура POAM II для измерения количества
озона в атмосфере над полюсами Земли.
Примечательно, что при гарантийном сроке в 3 года КА SPOT 1 и -2 до сих пор эксплуатируются (первому из них более 16 лет, второму – более 12). Правда, из-за отказа записывающих устройств оба спутника могут передавать информацию только в режиме
реального времени [14].
Рисунок 6 - КА SPOT 5
На КА SPOT 5 было достигнуто увеличение разрешения трех мультиспектральных
каналов (в видимом и ближнем инфракрасном диапазонах) до 10 м, а панхроматического
канала до 5 м. Изображения в этих каналах формируются двумя отдельными линейками ПЗС, которые вертикально и горизонтально сдвинуты на один полупиксель (2,5 м на местности) в фокальной плоскости. Финансирование создания КА SPOT 5 вели CNES, SSTC и SNSB. Кроме того, косвенно в создании спутника участвовали Италия и Испания. Они не финансировали проект, но разрабатывали ряд систем для европейской программы оптической разведки Helios 2, которые использовались и на КА SPOT 5.
Радиопозиционный допплеровский радиолокатор DORIS используется для
определения точных параметров орбиты КА по сигналам Сети наземных маяков IDS. В сеть входят около 60 радиомаяков в 30 странах мира на всех материках. Инициаторами
создания сети IDS стали CNES, Французский космический центр исследования геодезии GRGS и Французское агентство съемки из космоса и картографии IGN. С помощью DORIS
можно определять орбиту КА с точностью до 10–20 см при обработке информации на борту за 24-часовой цикл наблюдения и нескольких сантиметров при обработке данных
31
Геоинновационноеагентство «Иннотер»
на Земле. На SPOT 4 и 5 в составе DORIS имеется дополнительная навигационная система Diode, позволяющая вести измерения параметров орбиты в режиме реального
времени. На SPOT 4 точность измерений составляет 5 м по всем трем осям. Модернизированная версия ПО системы Diode, разработанная для КА SPOT 5, позволит достичь точности менее метра в реальном режиме времени.
9 сентября 2012 года инновационный КА SPOT-6 был выведен на солнечно-
синхронную орбиту индийской ракетой-носителем PSLV с космодрома имени Сатиша Дхавана на острове Шрихарикота. КА SPOT-6 обладает более высокими возможностями
по сравнению со своим предшественниками — космическими аппаратами SPOT 4 и SPOT 5 — он позволяет вести съемку Земли с разрешением до 1,5 м в панхроматическом
режиме и до 6 м в режиме многоспектральной съемки.
Spot-6 и 7 — два идентичных по характеристикам оптических КА ДЗЗ высокого
разрешения. Spot-7 планируется к запуску в 2014 году. Ширина полосы съемки SPOT 6,
как и аналогичного ему космического аппарата SPOT 7 составляет 60 км. Каждый из КА SPOT-6 и -7 способен ежедневно производить съемку до 3 млн.кв.км.
Космические аппараты представляют собой новое поколение серии Spot. Решение
об их создании было принято консорциумом EADS Astrium в 2009 году для обеспечения
продолжения высокодетальной съемки на годы вперед (плоть до 2023 года). Spot-6 и -7 заменят на орбите космические аппараты SPOT 4 и SPOT 5, запущенные в 1998 и 2002 гг. соответственно.
КА нового поколения SPOT совместно с КА группировки Pleiades образуют единую
систему. Четыре КА — Pleiades-1/2 и SPOT 6/7 — будут размещены в одной орбитальной
плоскости и равномерно разнесены по фазовому углу на 90° друг от друга. Это позволит коммерческим и государственным заказчикам получать съемку одной и той же территории два раза в день как в более широкой полосе с высоким разрешением с помощью спутников SPOT, так и в режиме детализированной съемки со сверхвысоким разрешением с помощью аппаратов Pleiades.
Система приема и обработки включает две главных станции в Тулузе (Франция) и
Кируне (Швеция). Эти станции могут получать телеметрические данные, зафиксированные на бортовых регистраторах или полученные непосредственно в
пределах их круга видимости, радиусом приблизительно 2500 км, центром которого они
являются. Кроме того, имеются 22 станции прямого получения , которые получают только телеметрические данные в пределах круга видимости. Каждая станция эффективно управляет собственной зоной видимости в соответствии со спутниковыми ресурсами, назначаемыми компанией SPOT Image.
32
Геоинновационноеагентство «Иннотер»
7 июля 1995 года был произведен 75-й запуск РН “Ариан”, которая успешно вывела полезную нагрузку в составе КА “Гелиос-1А” (Helios-1A). “Гелиос-1А” стал 100-м
спутником, выведенным на орбиту РН серии “Ариан” и третьим КА военного назначения, запущенным европейским носителем (первыми двумя были британские спутники военной связи “Скайнет-4В” и “Скайнет-4С” в 1988 и 1990 гг.) [17].
КА “Гелиос-1А” является первым спутником оптической разведки, изготовленным и
запущенным в Европе. Программа “Гелиос” начиналась как чисто французская и особенно стимулировалась опытом войны в Персидском заливе, когда французские
войска полностью зависели от США в части получения космической разведывательной информации. Впоследствии Франция обратилась к партнерам по ЕSА с предложением об
участии в ней. На это предложение откликнулись Италия и Испания, взявшие на себя соответственно 14 и 7 процентов финансирования работ по созданию КА “Гелиос-1”.
Головным разработчиком КА “Гелиос” была французская фирма “Matra” (к настоящему
времени объединившаяся с британской фирмой “Marconi Space” в международную группу
“Matra Marconi Space”).
КА массой 2537 кг конструктивно изготовлен на основе базового блока КА
дистанционного зондирования SPOT, разработанного фирмой “Aerospatiale”. Оптико-
электронная система, также разработанная “Aerospatiale”, обеспечивает максимальное разрешение на поверхности Земли до 1 метра. (Запущенные до сих пор КА SPOT-1..3 обеспечивают разрешение до 10 метров, правда, при несколько большей высоте рабочей орбиты). Помимо основных разработчиков, видное место в производственной кооперации
занимают фирмы “Thomson-CSF”, поставившая линейные сборки фотоприемников с
зарядовой связью с 4096 и 2048 элементами, “Sextant Avionic” (видеосистема), “Schlumberger Industries” (бортовые магнитофоны), SAGEM и SODERN (электроника).
Общее руководство программой “Гелиос” осуществляет Ракетно-космическое управление Генерального представительства по вооружению (Delegation General de I'Armament — DGA) Министерства обороны Франции, но ключевую роль в управлении аппаратом будет играть Национальный центр космических исследований (КНЕС).
Запросы на съемку от итальянского, испанского и французского командований будут поступать на французскую авиабазу Крейль. Там с участием военных представителей
Испании и Италии будет составляться интегрированная программа съемки (в которой
каждая сторона имеет право на долю, соответствующую ее доле финансирования проекта). Согласованная программа будет ежесуточно передаваться в центр КНЕС в Тулузе, осуществляющий управление “Гелиосом-1А”, и оттуда будет закладываться на борт аппарата. Получаемые же изображения будут передаваться на приемные станции,
33
Геоинновационноеагентство «Иннотер»
оборудованные в каждой стране-участнице. Французская приемная станция расположена в Кольмаре, вблизи границы с Германией и Швейцарией, итальянская — в Лечче, на юге
страны, испанская — в Маспаломасе, на Канарских островах. Кроме того, станция Западно-Европейского Союза в Торрехоне (Испания) будет также вести обработку изображений с “Гелиоса” для их использования странами ЗЕС.
Общая стоимость программы, включая изготовление двухКА и наземных станций в
трех странах, составляет 10 млрд. франков (2 млрд. $). В будущем предполагается создание усовершенствованного КА “Гелиос-2”, отличающегося более совершенной
оптической системой видимого диапазона и дополнительной системой наблюдения в инфракрасном диапазоне. Предусматривается изготовить два КА “Гелиос-2”, первый из
которых планировалось запустить в 2001 году, но был запущен 22 декабря 2004 года ракетой-носителем Ariane на орбиту высотой около 600 км. По мнению экспертов, запуск
Helios 2A свидетельствует о том, что Франция постепенно, но неуклонно смещает
акценты в своей военной политике с НАТО на Европейский Союз, избавляясь, в частности, от военно-технической зависимости. Основными областями, в которых европейские страны пока что фатально зависят от Америки, являются военно-
транспортная авиация, спутниковая разведка, глобальные навигационные системы, а
также авиационные системы разведки и целеуказания AWACS [17].
Европа находится только в самом начале длительного пути, который позволит в перспективе избавиться от зависимости в этих вопросах от НАТО. Тем не менее, активные действия в этом направлении уже предпринимаются. В ушедшем году Евросоюз
одобрил выделение $4 млрд. на закупку военно-транспортных самолетов концерна
Airbus. Такая же сумма выделена на разработку собственной европейской глобальной навигационной системы «Галилео».
Франция в настоящее время эксплуатирует два спутника Helios, позволяющих получать изображения поверхности Земли с разрешением около 1 метра. Такие снимки позволяют, к примеру, идентифицировать типы самолетов, стоящих на аэродроме. По данным французских военных источников, у нового спутника Helios 2A разрешение будет
более чем в четыре раза лучше. Полученные с его помощью снимки позволят уже не просто идентифицировать тип самолета, но и определить, что именно расположено у
него на внешней подвеске – ракеты или топливные баки. Наличие инфракрасного канала
позволит не только получать снимки ночью, но и установить, например, работает ли двигатель танка или нет.
Французский Helios 2A – лишь элемент разветвленной системы спутниковой разведки, создаваемой объединенной Европой. В скором будущем Германия начнет
34