- •11.Основные законы гидродинамики.Уравнение неразрывности струи
- •26.Торема гаусса и применение
- •27.Электрическое поле заряженной плоскости плоскость
- •28.Электрическое поле заряженной сферы сфера
- •29.Электрическое поле заряженной нити
- •30.Диэлектрики в электрическом поле .Явление поляризации диэлектриков
- •31.Постоянный электрический ток.Закон Ома и Джоуля-Ленца
- •32.Правило Киргофа
- •33.Магнитное поле.Понятие о магнитной индукции.ЗаконБио-саввара –лапаса
- •34.Магнитное поле прямого тока.Магнитное поля кругового тока.
- •35.Понятие магнитного потока.Сила Ампера
- •36.Закон полного тока
- •37.Уравнение Максвелла
- •§1.3. Второе уравнение Максвелла.
- •§1.4. Третье уравнение Максвелла. Закон сохранения заряда.
- •§1.5. Четвертое уравнение Максвелла.
- •38.Волны и их виды.Уравнение плоской волны.Энергия волны
- •39.Звуковые волны их характеристики.
- •40.Явление интерференции.Усл. Макс и мин
- •41.Примеры интерференции света.Меьод Юнга, в тонких пленках, кольца Ньютона
- •43.Дифракция света.Зоны Френеля
- •43.Дифракционная решетка.Угловая и линейная дисперсия.Разрешающая способность
- •44.Явление поляризации свтеа.ЗаконыБрюстера, Малюса
- •45.Двойноелучеприломление света
- •46.Тепловое излучение тела.Законыкиргофа, стефана-больцмана и вина
- •47.Ультрафиолетовая катастрофа, формула планка, квантовая природа излучения
- •48.Основы голографии.Получ. Голографич. Изображ. И их воспроизв.
- •49.Внешний фотоэффект.Уравн. Энштейна для фотоэфекта.Многофотонныйвнешн. Эффект.
- •50.Внутренний фотоэффект
- •51.Рентгеновские лучи, методы получения.Эффекткомптона.Давление света
- •52.Атом резерфорда –бора.Энергия атома водорода и водородоподобных атомов
- •53.Спектры излучения и поглощения атома водорода
- •54.Корпускулярно-волновой дуализм.Гипотеза де-бройля
- •55.Соотношение неопределенностей
- •56.Уравнение шреденгера.Волновая функция и ее физ. Смысл
- •57.Квантование энергии электрона в потенциальной яме.
- •58.Квантовые генераторы.Принцип работы
- •59.Основы зонной теории вещ-ва-проводники, диэлектрики полупрводники
- •60.Собственная и примесная проводимость полупроводников
- •61.Пи-н переход.Свой-ва
- •62.Полупроводниковый диод.Транзистор.Принцип работы
- •63.Строение ядра атома.Деффектмассы,энергия связи
- •64.Явление радиоактивности.З.Радиоактивного распада
- •65.Алфа бетта гамма распады
- •66.Ядерная реакция.Энергия ядерных реакций
54.Корпускулярно-волновой дуализм.Гипотеза де-бройля
Корпускуля́рно-волново́йдуали́зм — принцип, согласно которому любой объект может проявлять какволновые, так икорпускулярныесвойства. Был введён при разработкеквантовой механикидля интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепцияквантованных полейвквантовой теории поля.
Как классический пример, светможно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойстваэлектромагнитных волн. Свет демонстрирует свойства волны в явленияхдифракциииинтерференциипри масштабах, сравнимых с длиной световой волны. Например, дажеодиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемуюуравнениями Максвелла[1].
Гипотеза де Бройля заключается в том, что французский физик Луи де Бройль выдвинул идею приписать волновые свойства электрону. Проводя аналогию между квантом, де Бройль предположил, что движение электрона или какой-либо другой частицы, обладающей массой покоя, связано с волновым процессом.
Гипотеза де Бройля устанавливает, что движущейся частице, обладающей энергией E и импульсом p, соответствует волновой процесс, частота которого равна:
![]()
а длина волны:
![]()
где p - импульс движущейся частицы.
55.Соотношение неопределенностей
В
1927 г. В.Гейзенберг открыл так
называемые соотношения
неопределенностей, в
соответствии с которыми
неопределенности координаты и импульса связаны
между собой соотношением:
,
где
,h постоянная
Планка.
Своеобразие описания микромира
в том, что произведение неопределенности
(точности определения) положения Δx и
неопределенности (точности определения)
импульса Δpx всегда
должно быть равно или больше константы,
равной –
.
Из этого следует, что уменьшение одной
из этих величин должно приводить к
увеличению другой. Хорошо известно,
что любое измерение сопряжено с
определенными ошибками и совершенствуя
приборы измерения, можно уменьшать
погрешности, т. е. повышать точность
измерения. Но Гейзенберг показал, что
существуют сопряженные (дополнительные)
характеристики микрочастицы, точное
одновременное измерение которых,
принципиально невозможно. Т.е.
неопределенность – свойство самого
состояния, оно не связано с точностью
прибора.
Для
других сопряженных величин – энергии E
и времени t соотношения
неопределенностей, имеет
вид:
.
Это
означает, что при характерном времени
эволюции системы Δt ,
погрешность определения ее энергии не
может быть меньше чем
. Из
этого соотношения следует возможность
возникновения из ничего, так
называемых,виртуальных
частиц на
промежуток времени меньший, чем
и
обладающих энергией ΔE.
При этом закон сохранения энергии не
будет нарушен. Поэтому по современным
представлениям вакуум это
не пустота, в которой отсутствуют поля
и частицы, а физическая сущность, в
которой постоянно возникают и исчезают
виртуальные частицы.
Одним из основных принципов квантовой механики является принцип неопределенностей, открытый Гейзенбергом. Получение информации об одних величинах, описывающих микрообъект, неизбежно ведет к уменьшению информации о других величинах, дополнительных к первым. Приборы, регистрирующие величины, связанные соотношениями неопределенности, разного типа, они дополнительны друг к другу. Под измерением в квантовой механике подразумевается всякий процесс взаимодействия между классическим и квантовыми объектами, происходящий помимо и независимо от какого-либо наблюдателя. Если в классической физике измерение не возмущало сам объект, то в квантовой механике каждое измерение разрушает объект, уничтожая его волновую функцию. Для нового измерения объект нужно готовить заново. В этой связи Н. Бор выдвинул принцип дополнительности, суть которого в том, что для полного описания объектов микромира необходимо использование, двух противоположных, но дополняющих друг друга представлений.
