- •Кузнецов в.Н., Лисютченков с.Н. Цифровые и микропроцессорные устройства
- •Часть 3
- •220301– Автоматизация технологических процессов и производств
- •Содержание
- •Предисловие
- •Лабораторная работа №1 «Освоение среды разработки vmlab 3.12»
- •1.2 Теоретическое введение
- •1.2.1 Общие сведения
- •1.2.2 Среда разработки vmlab
- •1.2.3 Описание пользовательского интерфейса
- •1.2.4 Команды меню
- •Save All − сохранить все файлы Save As − сохранить файл текущего окна под новым именем
- •1.2.5 Доступные окна
- •1.2.6 Аппаратные компоненты
- •1.2.7 Формат программы на ассемблере
- •1.3 Порядок выполнения лабораторной работы
- •1.3.1 Создание нового проекта
- •1.3.2 Редактирование файла ассемблера
- •1.3.3 Ассемблирование и выполнение программы
- •1.4 Задание на лабораторную работу
- •1.5 Контрольные вопросы
- •1.6 Содержание отчета по лабораторной работе
- •Лабораторная работа №2 «Изучение микроконтроллера aTmega128 и основы программирования»
- •2.2.1 Общие сведения о микроконтроллере aTmega128
- •Регистры ввода/вывода (рвв)
- •Организация памяти
- •Внешние прерывания
- •2.2.9 Директивы транслятора ассемблера
- •2.2.10 Выражения
- •2.2.11 Операнды
- •2.2.12 Функции
- •2.2.13 Операции
- •2.3 Порядок выполнения лабораторной работы
- •2.4 Задание на лабораторную работу
- •Задание для индивидуальной работы
- •2.5 Контрольные вопросы
- •2.6 Содержание отчета по лабораторной работе
- •3.2.2 Адресация в микроконтроллере
- •3.2.3 Команды пересылки данных
- •Mov Rd,Rr(пересылка между рон) – копирует содержимое регистра Rrв регистр Rd. Регистр-источник Rrне изменяется.
- •3.2.4 Команды передачи управления
- •3.3 Порядок выполнения лабораторной работы
- •3.4 Задание на лабораторную работу
- •3.5 Контрольные вопросы
- •3.6 Содержание отчета по лабораторной работе
- •Лабораторная работа №4 «Выполнение арифметических операций»
- •4.2 Теоретическое введение
- •4.3 Порядок выполнения лабораторной работы
- •4.4 Задание на лабораторную работу
- •4.5 Контрольные вопросы
- •4.6 Содержание отчета по лабораторной работе
- •Лабораторная работа №5 «Изучение логических операций»
- •5.2 Теоретическое введение
- •Управление энергопотреблением и режимы сна.
- •5.3 Порядок выполнения лабораторной работы
- •5.4 Задания на лабораторную работу
- •5.5 Контрольные вопросы
- •5.6 Содержание отчета по лабораторной работе
- •Лабораторная работа №6 «Изучение портов ввода/вывода и их программирование»
- •6.2 Теоретическое введение
- •6.2.1 Общие сведения
- •6.2.2 Порты в качестве универсального цифрового ввода-вывода
- •6.2.3 Настройка выводов
- •6.2.4 Неподключенные выводы
- •6.2.5 Альтернативные функции порта
- •6.2.5.1 Альтернативные функции порта a
- •6.2.5.2 Альтернативные функции порта в
- •6.2.5.3 Альтернативные функции порта c
- •6.2.5.4 Альтернативные функции порта d.
- •6.2.5.5 Альтернативные функции порта e
- •6.2.5.6 Альтернативные функции порта f
- •6.2.5.1 Альтернативные функции порта g
- •6.2.6 Описание регистров портов ввода-вывода
- •6.2.7 Обращение к портам ввода/вывода
- •6.3 Порядок выполнения лабораторной работы на симуляторе
- •6.4 Задание на лабораторную работу
- •Задания для индивидуальной работы
- •Контрольные вопросы
- •6.6 Содержание отчета по лабораторной работе
- •Лабораторная работа №7.
- •7.2.1 Общие сведения о Память
- •7.2.2 Статическое озу памяти данных
- •7.2.3 Организация памяти
- •7.2.4 Запоминающее устройство sram
- •7.2.5 Временная диаграмма доступа к памяти
- •7.3 Память данных на эсппзу
- •7.3.1 Чтение и запись эсппзу
- •7.3.2 Адресные регистры эсппзу
- •Порядок выполнения
- •7.4 Память ввода-вывода
- •Порядок выполнения
- •Порядок выполнения
- •7.5 Задание на лабораторную работу
- •Задание для индивидуальной работы
- •7.6 Контрольные вопросы
- •7.7 Содержание отчета по лабораторной работе
- •Генерация тактовых импульсов
- •Инициализация усапп
- •8.2.2 Передача данных - Передатчик усапп
- •8.2.3 Прием данных - Приемник усапп
- •Асинхронный прием данных
- •8.2.4 Многопроцессорный режим связи
- •8.2.5 Описание регистров усапп
- •8.2.6 Последовательный периферийный интерфейс - spi
- •8.2.7 Функционирование вывода ss
- •8.2.8 Связь двух мк
- •8.3 Задание на лабораторную работу
- •Задание для индивидуальной работы
- •8.6 Контрольные вопросы
- •Лабораторная работа №9 «Изучение принципа работы таймеров/счетчиков микроконтроллера»
- •9.2 Теоретическое введение
- •9.2.1 Общие сведения о таймерах/счетчиках
- •9.2.2 Назначение выводов таймеров/счетчиков
- •9.2.5 Выбор источника тактового сигнала
- •9.2.6 Режим таймера
- •9.2.7 Функция захвата (Capture)
- •9.2.8 Функция сравнения (Compare)
- •9.2.9 Режим шим
- •9.2.10 Сторожевой таймер
- •9.2.11 Общие сведения о работе клавиатуры
- •9.2.12 Ввод кода нажатой клавиши
- •9.2.13 Сканирование и идентификация
- •Листинг проектного файла №9
- •На эмуляторе
- •9.4 Задание на лабораторную работу
- •Задания для индивидуальной работы
- •9.5 Контрольные вопросы
- •10.2.2 Функционирование модуля ацп
- •10.2.3 Принцип действия
- •10.2.4 Каналы дифференциального усиления
- •10.2.5 Изменение канала или выбор опорного источника
- •10.2.6 Входные каналы ацп
- •10.2.7 Источник опорного напряжения ацп
- •10.2.8 Повышение точности преобразования
- •10.2.9 Методы компенсации смещения
- •10.2.10 Описание получения результата преобразования
- •10.2.5 Параметры ацп
- •10.2 Порядок выполнения работы на симуляторе
- •На эмуляторе
- •10.3 Задание на лабораторную работу
- •Задания для индивидуальной работы
- •10.4 Контрольные вопросы
- •Приложение
- •Список литературы
6.2.2 Порты в качестве универсального цифрового ввода-вывода
Все порты являются двунаправленными портами ввода-вывода с опциональными подтягивающими резисторами. Рисунок 6.2 иллюстрирует функциональную схему одной линии порта ввода-вывода, обозначенный как Pxn.

Рис. 6.2 Организация универсального цифрового ввода-вывода (1)
Прим. 1: Сигналы WPx, WDx, RRx, RPx и RDx являются общими в пределах одного порта. Сигналы clkI/O, SLEEP, и PUD являются общими для всех портов.
6.2.3 Настройка выводов
Режим и состояние для каждого вывода определяется значением соответствующих разрядов трех регистров: DDxn, PORTxn и PINxn. Доступ к битам DDxn возможен по адресу DDRx в пространстве ввода-вывода и, соответственно, к битам PORTxn по адресу PORTx, а к битам PINxn по адресу PINx. Биты DDxn регистра DDRx определяют направленность линии ввода-вывода. Если DDxn = 1, то Pxn конфигурируется на вывод. Если DDxn=0, то Pxn конфигурируется на ввод. Если PORTxn = 1 при конфигурации линии порта на ввод, то разрешается подключение подтягивающего резистора. Для выключения данного резистора необходимо записать в PORTxn логический (лог.) 0 или настроить линию порта на вывод. Во время сброса все линии портов находятся в третьем (высокоимпедансном) состоянии, даже если не работает синхронизация. Если PORTxn = 1 при конфигурации линии порта на вывод, то состояние выхода будет определяться значением PORTxn. Поскольку одновременная запись в регистры DDRx и PORTx невозможна, то при переключении между третьим состоянием ({DDxn, PORTxn} = 0b00) и выводом лог. 1 ({DDxn, PORTxn} = 0b11) должно возникнуть промежуточное состояние или с подключенным подтягивающим резистором ({DDxn, PORTxn} = 0b01) или с выводом лог. 0 ({DDxn, PORTxn} = 0b10). Как правило, переход через состояние с подключением подтягивающего резистора эквивалентно состоянию вывода лог.1, если вывод микроконтроллера связан с высокоимпедансным входом. В противном случае, необходимо установить бит PUD регистра SFIOR для выключения всех подтягивающих резисторов на всех портах. Переключение между вводом с подтягивающими резисторами и выводом низкого уровня связано с аналогичной проблемой. Поэтому, пользователь вынужден использовать или третье состояние ({DDxn, PORTxn} = 0b00) или вывод лог. 1 ({DDxn, PORTxn} = 0b11) в качестве промежуточного шага.
В таблице 6.1 подытоживается действие управляющих сигналов на состояние вывода.
Таблица 6.1 Настройка вывода порта
|
DDxn |
PORTxn |
PUD (в SFIOR) |
Ввод-вывод |
Подтягивающий резистор |
Комментарий |
|
0 |
0 |
X |
Ввод |
Нет |
Третье состояние (Z-состояние) |
|
0 |
1 |
0 |
Ввод |
Да |
Pxn будет источником тока при подаче внешнего низкого уровня |
|
0 |
1 |
1 |
Ввод |
Нет |
Третье состояние (Z-состояние) |
|
1 |
0 |
X |
Вывод |
Нет |
Вывод лог. 0 (втекающий ток) |
|
1 |
1 |
X |
Вывод |
Нет |
Вывод лог. 1 (вытекающий ток) |
Считывание состояние вывода
Независимо от значения бита направления данных DDxn состояние вывода порта может быть опрошено через регистровый бит PINxn. Как показано на рисунке 6.2 регистровый бит PINxn и предшествующая ему триггерная защелка составляют синхронизатор. Данный подход позволяет избежать метастабильности, если изменение состояния на выводе произошло около фронта внутренней синхронизации. Однако такой подход связан с возникновением задержки. На рисунке 6.3 представлена временная диаграмма синхронизации во время опроса внешне приложенного к выводу уровня. Длительности минимальной и максимальной задержек на распространение сигнала обозначены как tpd,max и tpd,min, соответственно.

Рис. 6.3 Синхронизация во время опроса приложенного к выводу порта уровня
