66.H a n g a n T h. A Morse function on Grassmann manifolds // J. Di . Geom. 1968. V. 2. P. 363–367.
67.H a r r i s G., M a r t i n C. The roots of a polynomial vary continuously as a function of the coe cients // Proc. AMS. 1987. V. 100. P. 390–392.
68.H a t c h e r A. Algebraic topology. Cambridge: CUP, 2002.
69. H e a w o o d P. J. Map colour theorem // Quart. J. Math. 1890. V. 24.
P. 332–338.
70.H i r s h M. W. A proof of the nonretractibility of a cell onto its boundary // Proc. AMS. 1963. V. 14. P. 364–365.
71.
H o C h u n g - W u A note on proper maps // Proc. AMS. 1975. V. 51.
P. 237–241.
72.
H o C h u n g - W u When are immersions di eomorphisms? // Canadian
Math. Bull. 1981. V. 24. P. 491–492.
73.H o p f E. Über die Drehung der Tangenten und Sehnen ebener Kurven // Comp. Math. 1935. Bd. 2. S. 50–62.
74.H o p f H. Abbildungsklassen n-dimensionaler Mannigfaltigkeiten // Math. Ann. 1927. Bd. 96. S. 209–224.
75.H u S. - T. Elements of general topology. San Francisco: Holden-Day, 1964.
76.J ä n i c h K. Topology. New York: Springer, 1980.
77.J o r d a n C. Cours d’Analyse de l’École Polytechnique. Gauthier–Villars, Paris, 1887. Vol. 3, 587–594.
78.K a k u t a n i S h. A generalization of Brouwer’s fixed point theorem // Duke Math. J. 1941. V. 8. P. 457–459.
79.K a k u t a n i S h. A proof that there exists a circumscribing cube around any bounded closed convex set in Rn // Ann. Math. 1942. V. 43. P. 739–741.
80.K n a s t e r B., K u r a t o w s k i C., M a z u r k i e w i c z C. Ein Beweis des Fixpunktesatzes für n-dimensionale Simplexe // Fund. Math. 1929. Bd. 14.
S.132–137.
81.K n u t s o n G. W. A note on the universal covering space of a surface // Amer. Math. Monthly 1971. V. 78. P. 505–509.
82.K o c h R. Matrix invariants // Amer. Math. Monthly 1984. V. 91. P. 573–575.
83.K ö n i g D. Theorie der endlichen und unendlichen Graphen. Leipzig, 1936.
84.K u r a t o w s k i K. Sur le problème des courbes gauches en topologie // Fund. Math. 1930. V. 15. P. 271–283.
85.L e e S h. - N. A combinatorial Lefschetz fixed-point theorem // J. Combinatorial Theory, Ser. A. 1992. V. 61. 123–129.
86.L e i g h t o n F. T h. Finite common coverings of graphs // J. Combinatorial Theory. Ser. B 1982. V. 33 231–238.
87.L o v á s z L., S c h r i j v e r A. A Borsuk theorem for antipodal links and spectral characterization of linklessly embeddable graphs // Proc. AMS. 1998.
V.126. P. 1275–1285.
88.M a c L a n e S. A combinatorial condition for planar graphs // Fund. Math. 1937. V. 28. P. 22–32.
342
Литература
89.M a e h a r a H. Why is P2 not embedable in R3? // Amer. Math. Monthly. 1993. V. 100. P. 862–864.
90.M a e h a r a R. The Jordan curve theorem via the Brouwer fixed point theorem // Amer. Math. Monthly 1984. V. 91. P. 641–643.
91.M a k a r y c h e v Y u. A short proof of Kuratovski’s graph planarity criterion // J. Graph Theory 1997. V. 25. P. 129–131.
92. M a r x M. L. The Gauss realizability problem // Proc. AMS. 1969. V. 22.
P.610–613.
93.M a t h e r M. Paracompactness and partitions of unity. PhD thesis, Cambridge Univ., 1965.
94.M a y e r J. Le problème des regions voisines sur les surfaces closed orientables // J. Comb. Theory 1969. V. 6. P. 177–195.
95.M e y e r s o n M. D., W r i g h t A. H. A new and constructive proof of the Borsuk–Ulam theorem // Proc. AMS. 1979. V. 73. P. 134–136.
96.M i l n o r J. Analytic proof of the “hairy ball theorem” and the Brouwer fixed point theorem // Amer. Math. Monthly. 1978. V. 85. P. 521–524.
97.M o i s e E. M. Geometric topology in dimension 2 and 3. New York: Springer, 1977.
98.M o r t o n H. R. Symmetric products of the circle // Proc. Cambridge Phil. Soc. 1967. V. 63. P. 349–352.
99.N a b e r G. L. Topological methods in Euclidean spaces. Cambridge: CUP, 1980.
100. N a s h - W i l l i a m s C. S t. J. A., T u t t e W. T. More proofs of Menger’s theorem // J. Graph Theory 1977. V. 1. P. 13–17.
101.N e g a m i S. Polynomial invariants of graphs // Trans. AMS. 1987. V. 299. P. 601–622.
102.O k a M. Some plane curves whose complements have non-abelian fundamental groups // Math. Ann. 1975. V. 218. P. 55–65.
103.O z a w a T. On Halpern’s conjecture for closed plane curves // Proc. AMS. 1984. V. 92. P. 554–560.
104. P a r s o n s T. D. On planar graphs // Amer. Math. Monthly. 1971. V. 78.
P.176–178.
105.P e t r o J. Real division algebras of dimension > 1 contains C // Amer. Math. Monthly 1987. V. 94. P. 445–449.
106.P o i n c a r é H. Sur les courbes définies par les équations di érentielles IV //
J.Math. Pures et Appl. 1886. V. 2. P. 151–217.
107.P r ü f e r M. Complementary pivoting and the Hopf degree theorem // J. Math. Analysis Appl. 1981. V. 84. P. 133–149.
108.R i n g e l G. Das Geshlecht des vollständiger paaren Graphen // Abh. Math. Semin. Univ. Hamburg. 1965. Bd. 28. S. 139–150.
109.
R i n g e l G., Y o u n g s J. W. T. Solution of the Heawood map-coloring
problem // Proc. Nat. Acad. Sci. USA 1968. V. 60. P. 438–445.
110.
R i n g e l G., Y o u n g s J. W. T. Remarks on the Heawood conjecture. //
In: Proof Techniques in Graph Theory. New York: Academic Press, 1969.
Литература
343
111.R o b b i n s H. Some complements to Brouwer’s fixed point theorem // Israel J. Math. 1967. V. 5. P. 225–226.
112. R o b e r t s o n N., S a n d e r s D. P., S e y m o u r P. D., T h o m a s R. The four–colour theorem // J. Comb. Theory, Ser. B, 1997. V. 70. P. 2–44.
113.R o g e r s C. A. A less strange version of Milnor’s proof of Brouwer’s fixedpoint theorem // Amer. Math. Monthly 1980. V. 87. P. 525–527.
114.R o t m a n J. J. An introduction to algebraic topology. New York: Springer, 1988.
115.R u d i n M. E. A new proof that metric spaces are paracompact // Proc. AMS. 1969. V. 20 P. 603.
116. S a c h s H.
On a spatial analogue of Kuratowski’s theorem on planar
graphs – an
open problem. // In: Lecture Notes Math. 1982. V. 1018.
P. 231–240.
117.S a m e l s o n H. Orientability of hypersurfaces in Rn // Proc. AMS. 1969.
V. 22. P. 301–302.
118.S a r d A. The measure of the critical points of di erentiable maps // Bull. AMS. 1942. V. 48. P. 883–890.
119.S a r k a r i a K. S. A generalized Kneser conjecture // J. Comb. Theory. Series B, 1990. V. 49. P. 236–240.
120.S a r k a r i a K. S. A one-dimensional Whitney trick and Kuratowski’s graph planarity criterion // Israel J. Math. 1991. V. 73. P. 79–89.
121.S e i f e r t H. Konstruktion dreidimensionaler geschlossener Räume // Ber. Sächs. Akad. Wiss. 1931. V. 83. P. 26–66.
122.S p e r n e r E. Neuer Beweis für die Invarianz der Dimensionzahl und des Gebietes // Abh. math. Semin. Hamburg. Univ. 1928. Bd. 6. S. 265–272.
123. S t e i n i t z E. Polyeder und Raumeinteilungen. In: Enzykl. Math. Wiss., Bd. 3 (Geometrie) Part 3 AB 12 1922. S 1–139.
124. S t o n e A. H. Paracompactness and product spaces // Bull. AMS. 1948.
V. 54. P. 977–982.
125.T h o m a s s e n C. Kuratowski’s theorem // J. Graph Theory. 1981. V. 5.
P. 225–241.
126.T h o m a s s e n C. The Jordan–Schönflies theorem and the classification of surfaces // Amer. Math. Monthly. 1992. V. 99. P. 116–130.
127. T u c k e r A. W. Some topological properties of disk and sphere. In: Proc. First Canadian Math. Congress. 1945. 285–309.
128.T u t t e W. T. A contribution to the theory of chromatic polynomials // Canadian J. Math. 1954. V. 6. P. 80–91.
129.T v e r b e r g H. A proof of the Jordan curve theorem // Bull. London Math. Soc. 1980. V. 12. P. 34–38.
130.V a n C. L. Topological degree and the Sperner lemma // J. Optimiz. Theory Appl. 1982. V. 37. P. 371–377.
131.v a n K a m p e n E. Komplexe in euklidischen Räumen // Abh. Math. Sem. Univ. Hamburg 1932. V. 9. P. 72–78, 152–153.
344
Литература
132.v a n K a m p e n E. On the fundamental group of an algebraic curve // Amer. J. Math. 1933. V. 55. P. 255–260.
133.v a n K a m p e n E. On the connection between the fundamental groups of some related spaces // Amer. J. Math. 1933. V. 55. P. 261–267.
134.V e b l e n O. Theory of plane curves in nonmetrical analysis situs // Trans. AMS. 1905. V. 6. P. 83–98.
135. W a g n e r K. Bemerkungen zum Vierfarbenproblem // Jahresberichte Deutsch Math. Verein. 1936. Bd. 46. S. 26–32.
136.W a n g Z h. On Bott polynomials // J. Knot Theory and its Ramifications 1994. V. 3. P. 537–546.
137.W a t s o n G. N. A problem in analysis situs // Proc. London Math. Soc. 1916. V. 15. P. 227–242.
138.W e i l A. Sur le théorèmes de de Rham // Comment. Math. Helv. 1952. V. 26.
P.119–145.
139.W e i s s B. A combinatorial proof of the Borsuk–Ulam antipodal point theorem // Israel J. Math. 1989. V. 66. P. 364–368.
140.W h i t e h e a d J. H. C. Combinatorial homotopy I // Bull. AMS. 1949. V. 55.
P.213–245.
141.W h i t n e y H. Nonseparable and planar graphs // Trans. AMS. 1932. V. 34.
P.339–362.
142.W h i t n e y H. The coloring of graphs // Ann. Math. 1932. V. 33. P. 687–718.
143.W h i t n e y H. A set of topological invariants for graphs // Amer. J. Math. 1933. V. 55. P. 231–235.
144. W h i t n e y H. Di erentiable manifolds // Ann. Math. 1936. V. 45.
P.645–680.
145.W h i t n e y H. On regular closed curves in the plane // Comp. Math. 1937.
V.4. P. 276–284.
146. W u W. T. On critical sections of convex bodies // Sci. Sinica 1965. V. 14.
P.1721–1728.
147.Z a r i s k i O. On the problem of existence of algebraic functions of two variables possessing a given branch curve // Amer. J. Math. 1929. V. 51.
P.305–328.
148.Z a r i s k i O. Algebraic surfaces. Berlin: Springer, 1935.
149.Z a r i s k i O. On the Poincaré group of rational plane curves // Amer. J. Math. 1936. V. 58. P. 607–619.
Предметный указатель
CW -комплекс 134
–n-мерный 134
–нетриангулируемый 137 k-связный граф 32 n-листное накрытие 46 n-мерный CW -комплекс 134 1-мерный комплекс 17
А
абстрактный симплициальный комплекс 115
автоморфизм накрытия 49 алгебра Клиффорда 290
– с делением 223 алгебраическая кривая плоская 304
– жорданова 75 кривые регулярно гомотопные 78 критическая точка 207
– – невырожденная 261 критическое значение 207 Куратовского теорема 21
кусочно-линейная теорема Жордана 19
Л
Лебега теорема о замкнутых покрытиях 71
–– об открытых покрытиях 70
–число 70
лемма Борсука 181
–Морса 262
–об однородности многообразий 244
–Такера 130
–Урысона 67, 103
–Шпернера 92, 120, 127
Лефшеца формула комбинаторная 120 линейно связное пространство 42 линзовое пространство 259 локальная система координат 197 локально компактное пространство