Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

топология / Tom Dieck T. Algebraic topology (EMS, 2008)

.pdf
Скачиваний:
54
Добавлен:
16.04.2015
Размер:
2.72 Mб
Скачать

278 Chapter 11. Homological Algebra

Proof. The part i; j; k x 2 G0 there exist xj

satisfies the hypothesis of the Sum Lemma (11.1.2). Given 2 Gj such that i0x D i1x1 C i2x2. We compute

0 D j0i0x D j0i1x1 C j0i2x2 D h1x1 C h2x2; l1x D j1i0x D j1i1x C j1i2x D j1i1x D k1x1;

hence x1

D

1

D

2

 

 

k 1l1x and similarly x2

 

k 1l2x.

 

(11.1.4) Five Lemma. Given a commutative diagram of groups and homomorphisms with exact rows:

 

 

 

 

˛

 

 

 

 

ˇ

 

 

 

 

 

 

 

ı

 

 

A

 

 

 

 

B

 

 

 

C

 

 

 

 

D

 

 

 

 

E

 

a

 

 

 

 

 

b

 

 

 

 

c

 

 

 

d

 

 

 

 

e

 

 

˛0

 

 

 

ˇ 0

 

 

 

0

 

 

 

 

ı0

 

 

 

 

 

 

 

 

 

 

A0

 

 

B

0

 

 

C

0

 

 

D0

 

 

E0.

 

 

 

 

 

 

 

 

(1)a surjective, b; d injective ) c injective. (Here the E-part of the diagram is not needed.)

(2)b; d surjective, e injective ) c surjective. (Here the A-part of the diagram is not needed.)

(3)a surjective, b; d bijective, e injective ) c bijective.

Proof. For another proof see (11.2.7). We give here a direct proof by the “method” called diagram chasing. One refers to diagram chasing whenever the proof (chasing elements through the diagram) does not really require a mathematical idea, only careful patience.

(1)Let c.w/ D 0. Then 0c.w/ D d .w/ D 0, and injectivity of d shows

.w/ D 0. By exactness, ˇ.v/ D w for some v. Since ˇ0b.v/ D cˇ.v/ D 0, we have ˛0.u0/ D b.v/ for some u0, by exactness, and a.u/ D u0 by surjectivity of a. By injectivity of b and commutativity we see ˛.u/ D v and hence by exactness w D ˇ.v/ D 0.

(2)Given w0 2 C 0. Choose x such that d.x/ D 0.c0/. By exactness,

commutativity, and injectivity of e, we see ı.x/ D 0 and hence .w/ D x for some w. By commutativity, c.w/ and w0 have the same image under 0. Hence w0 D c.w/ ˇ0.v0/ for some v0. Then c.w ˇ.v// D c.w/ cˇ.v/ D c.w/ ˇ0b.v/ D c.w/ ˇ0.v0/ D w0, i.e., w0 is contained in the image of c.

(3) A consequence of (1) and (2).

 

11.2. Exact Sequences

279

Problems

1.Let p be a projection operator on M . Then 1 p is a projection operator. The equalities Im.1 p/ D Ker.p/ and Ker.1 p/ D Im.p/ hold. Moreover M D Im.p/ ˚ Im.1 p/. The submodule A of M is a direct summand if and only if there exists a projection operator with image A.

2.Let .Aj j j 2 J / be a finite family of modules. Suppose given linear maps ik W Ak ! A

and pl

W

A

!

A

 

such that pk ik

 

id and pk il

D

0

 

k

l

 

 

 

pk il

D

ıkl

 

 

 

 

 

 

l

 

 

k

 

 

 

 

D

k

 

 

 

 

 

forj

 

j6D (we write

 

 

 

in this

case). Then .pk / ı h i

 

i D id and h i

 

 

i ı .pk / D

j i

 

p

is a projection operator. Hence

the following are equivalent: (1)

 

ik

 

is an

isomorphism. (2) .pk / is an isomorphism. (3)

P

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

i

 

 

 

P

 

 

 

 

 

Z

 

 

˚ Z

 

 

.

3.

j ij pj D id.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=.pk /

 

 

=.pl /

 

Let p be a prime number. Determine the number of subgroups of

 

 

 

 

4.

Consider the group Z=.6/˚Z. Determine the subgroups of index 2; 3; 4; 5; 6. Determine

the number of complements of the torsion subgroup.

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

Let A be a finitely generated abelian group. Then A ˝Z Q is a Q-vector space. Show

that its dimension is the rank of A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

Let Mj , j 2 J be submodules of M . The following assertions are equivalent:

 

 

 

 

(1)

 

j Mj is the direct sum of the Mj .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2)

For each i

2

J , M

 

 

j;j ¤i

M

D f

0

g

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

i \

 

j

 

 

 

D

 

 

 

D

 

 

 

 

 

2

 

 

 

(3)

 

 

 

P

xj

D

0, xj

2

M

 

, almost all x

0, then x

0 for each j

J .

 

 

Suppose

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

j

 

 

 

 

 

 

j

 

 

 

j

 

 

 

 

 

 

 

 

 

11.2 Exact Sequences

We start with a commutative diagram of modules.

A

 

 

a

 

 

 

 

b

 

 

 

 

 

 

 

 

B

 

 

 

 

 

C

 

 

˛

 

 

 

 

ˇ

 

 

 

 

 

 

 

a

0

 

 

 

b

0

 

 

 

A0

 

 

B0

 

 

C

0

 

 

 

 

 

 

It yields two derived diagrams (Ke D kernel, Ko D cokernel, Im D Image).

Ke.˛/ a Ke.ˇ/

b Ke. /

.1/

D

.2/

 

 

a

 

 

 

 

b

 

 

 

 

 

 

Ke.a0˛/

 

Ke.ˇ/

 

Ke. / \ Im.b/

 

 

 

 

 

 

 

 

 

 

 

a0

 

b0

 

 

 

Ko.˛/

 

 

 

 

Ko.ˇ/

 

 

Ko. /

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.3/

 

 

 

 

 

 

D

 

 

.4/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A0

 

 

 

a0

B0

b0

C 0

 

Im.˛/ C Ke.a0/

 

 

 

Im.ˇ/

 

 

Im. b/

280 Chapter 11. Homological Algebra

The morphisms named a; b; a0; b0 are induced by the original morphisms with the same name by applying them to representatives. (1) and (2) are inclusions, (3) and

(4) are quotients.

(11.2.1) Proposition. Let .a; b/ and .a0; b0/ be exact. Then a connecting morphism

A0

ı W Ke. / \ Im.b/ ! Im.˛/ C Ke.a0/

is defined by the correspondence .a0/ 1ˇb 1.

Proof. For z 2 Ke. / \ Im.b/ there exists y 2 B such that b.y/ D z; since z 2 Ke. / and b D b0ˇ we have ˇ.y/ 2 Ke.b0/; since Ke.b0/ Im.a0/, there exists x0 2 A0 such that a0.x0/ D ˇ.y/. We set ı.z/ D x0 and show that this assignment is well-defined. If yQ 2 B, b.y/Q D z, then b.y y/Q D 0; since Ke.b/ Im.a/,

there exists x

2

A such that a.x/

D

y

Q

 

Q

D

a0˛.x/,

 

Q

 

y. We have ˇ.y/

 

ˇ.y/

 

because of a0˛

D

ˇa, and with a0

 

/

D

Q

0

Q

 

˛.x//

D

0,

 

 

.x0

 

ˇ.y/ we obtain a0.x

x0

 

 

i.e., x0

Q

 

 

 

C

Ke.a0/ .

 

 

 

 

 

 

 

 

 

 

 

x0 mod Im.˛/

 

 

 

 

 

 

 

 

 

 

 

 

We add further hypotheses to the original diagram and list the consequences for the derived diagrams. We leave the verification of (11.2.2), (11.2.3), (11.2.4), (11.2.5) to the reader.

11.2.2 If a0 is injective, then (1) and (3) are bijective. If b is surjective, then (2)

and (4) are bijective.

 

 

 

 

 

 

Þ

11.2.3 Let .a0; b0/ be exact. Then

 

 

 

 

 

 

 

 

A0

a0

B0 b0

 

C 0

 

 

 

!

 

!

 

 

 

 

Im.˛/ C Ke.a0/

Im.ˇ/

Im. b/

 

is exact. If, moreover, b is surjective, then (4) is bijective and therefore

 

 

a0

 

b0

 

 

 

 

 

Ko.˛/ ! Ko.ˇ/ ! Ko. /

 

is exact. If b0 is surjective, then the derived b0 is surjective too.

Þ

11.2.4 Let .a; b/ be exact. Then

 

 

 

 

 

 

 

 

a

 

b

\ Im.b/

 

 

Ke.a0˛/ ! Ke.ˇ/ ! Ke. /

 

is exact. If, moreover, a0 is injective, then (1) is bijective and therefore

 

 

a

 

b

 

 

 

 

 

Ke.˛/ ! Ke.ˇ/ ! Ke. /

 

11.2. Exact Sequences

281

is exact. If a is injective, then the derived a is injective too.

Þ

11.2.5 Let .a; b/ and .a0; b0/ be exact. Then, as we have seen, ı is defined. Under these assumptions the bottom lines of the derived diagrams together with ı yield an exact sequence. (See the special case (11.2.6).) Þ

(11.2.6) Kernel–Cokernel Lemma. If in the original diagram a0 is injective and b surjective, then .1/; .2/; .3/, and .4/ are bijective and the kernel-cokernel-sequence

a b ı a0 b0

Ke.˛/ ! Ke.ˇ/ ! Ke. / ! Ko.˛/ ! Ko.ˇ/ ! Ko. /

is exact.

Proof. We show the exactness at places involving ı; the other cases have already been dealt with. The relations ıb D 0 and a0ı D 0 hold by construction.

If the class of x0 is contained in the kernel of a0, then there exists y such that a0.x0/ D ˇ.y/. Hence z D b.y/ 2 Ke. / by commutativity, and ı.z/ D x0.

Suppose z 2 Ke. / is contained in the kernel of ı. Then there exists y such that z D b.y/; ˇ.y/ D a0.x0/ and ˇ.z/ D ˛.x/ 2 Im.˛/. Then b.y a.x// D z and ˇ.y a.x// D ˇ.y/ ˇa.x/ D ˇ.y/ a0˛.x/ D ˇ.y/ a0.x0/ D 0. Hence y a.x/ is a pre-image of z.

We now relate the Kernel–Cokernel Lemma to the Five Lemma (11.2.7); see also (11.1.4). Given a commutative five-term diagram of modules and homomorphisms with exact rows.

A

 

 

˛

 

 

 

 

ˇ

 

 

 

 

 

 

 

ı

 

 

 

 

 

 

B

 

 

 

C

 

 

 

 

D

 

 

 

 

E

 

a

 

 

 

 

 

b

 

 

 

 

c

 

 

 

d

 

 

 

 

e

 

 

˛0

 

 

 

ˇ 0

 

 

 

0

 

 

 

 

ı0

 

 

 

 

 

 

 

 

 

 

A0

 

 

B

0

 

 

C

0

 

 

D0

 

 

E0

 

 

 

 

 

 

 

 

We have three derived diagrams.

0

 

Ke.ı/

D

ı

 

E

 

 

 

 

 

 

 

A

˛

 

 

B

 

Ko.˛/

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

 

 

 

 

d

 

 

 

 

 

e

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

b

 

 

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ı

0

 

 

 

 

 

 

 

 

 

 

 

 

˛

0

 

 

 

 

 

 

 

 

 

 

0

 

Ke0

/

 

 

D0

 

 

 

E

0

,

 

 

 

 

 

 

A0

 

 

 

B

0

 

 

Ko0/

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

Ko.˛/

 

 

ˇ

 

C

 

 

 

Ke.ı/

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

c

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˇ 0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

Ko0/

 

 

 

C

0

 

 

 

Ke0

/

 

 

 

 

 

0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

282 Chapter 11. Homological Algebra

The rows of the first two diagrams are exact for trivial reasons. The exactness of the rows of the original diagram implies that the third diagram has exact rows. From the considerations so far we obtain the exact sequences

 

 

 

 

 

 

 

 

.d /

!

Ko.d /;

 

 

 

 

 

 

Ke.e/ \ Im.ı/ ! Ko Q

 

 

 

 

 

 

 

Ke.b/

!

 

Q !

A0=.Im.a/

C

Ke0//;

 

 

 

0 ! Ke Q

 

 

Ke.b/

 

 

Q

!

 

!

Ke.c/

!

Q

!

Q

!

Ko.c/

!

0:

.b/

 

 

 

Ke.d /

 

Ko.b/

 

 

 

Ko.d /

 

This yields:

(11.2.7) Five Lemma. Given a five-term diagram as above. Then the following

holds:

 

 

0; Ke.d /

 

 

 

Ke.c/

 

 

 

 

 

 

 

(1)

.b/

 

0

 

 

0:

 

 

 

 

 

Ke

Q

D

Q

 

)

 

 

D

 

 

 

 

 

 

(2)

Ko

Q

Q D

0

 

 

 

 

 

 

 

 

 

 

.b/

D

0; Ko.d / D

)

Ko.c/ D 0:

 

Q

D

 

 

(3)

Ke.b/

D

0; A0=.Im.a/

C

Ke0

//

D

0

)

 

0:

 

 

 

 

.d /

Ke.b/

 

 

(4)

Ke.e/ \ Im.ı/ D 0; Ko.d / D 0

)

 

D

0:

 

 

 

Ko Q

 

 

 

 

(5)

a surjective, b; d injective

) c injective. (Here the E-part of the diagram

 

is not needed.)

 

 

 

 

 

 

 

 

 

 

 

 

 

(6)

b; d surjective, e injective ) c surjective. (Here the A-part of the diagram

 

is not needed.)

 

 

 

 

 

 

 

 

 

 

 

 

 

(7)

a surjective, b; d bijective, e injective ) c bijective.

 

Problems

1. Given homomorphisms f W A ! B and g W B ! C between R-modules. Then there is a natural exact sequence

0 ! Ke.f / ! Ke.gf / ! Ke.g/ ! Ko.f / ! Ko.gf / ! Ko.g/ ! 0:

The connection to the previous considerations: The commutative diagram with exact rows

0

 

 

 

.1;f /

A

˚ B

h f;1 i

B

0

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

 

gf ˚1

 

 

g

 

 

 

 

 

 

 

 

 

0

 

 

.g;1/

C

 

 

h 1;g i

 

 

 

0

 

 

 

 

 

B

˚ B

 

C

 

 

 

 

 

 

 

 

 

 

 

can be viewed as an exact sequence of chain complexes. Its homology sequence (11.3.2) is the desired sequence, if we identify the kernel and cokernel of gf ˚1 with the corresponding modules for gf .

Describe the morphisms of the sequence and give also a direct proof.

11.3. Chain Complexes

283

11.3 Chain Complexes

The algebraic terminology of chain complexes arose from the definition of homology groups. Since then it also has become of independent interest in algebra (homological algebra). The construction of (singular) homology proceeds in two stages: First one associates to a space a so-called chain complex. Then the chain complex yields, by algebra, the homology groups. The category of chain complexes and chain maps has an associated homotopy structure.

We work in this section with the category R- MOD of left modules over some fixed ring R. A family A D .An j n 2 Z/ of modules An is called a Z-graded

module. We call An the component of degree or dimension n. One sometimes

L

considers the direct sum n2Z An; then the elements in An are said to be homogeneous of degree n. Typical examples are polynomial rings; if kŒx; y is the polynomial ring in two indeterminates x; y of degree 1 say, then the homogeneous polynomials of degree n are spanned by xi yn i for 0 i n, and in this manner we consider kŒx; y as a graded k-module (actually a graded algebra, as defined later). One can also consider formal power series; this would correspond to taking

the product

n2Z An instead of the sum.

 

 

 

 

 

 

Let A

and B

 

be

Z

-graded modules. A family f

n W

A

n !

B

nCk

of homomor-

Q

 

 

 

 

 

 

phisms is called a morphism of degree k between the graded modules.

A sequence C D .Cn; @n j n 2 Z/ of modules Cn and homomorphisms

@n W Cn ! Cn 1, called boundary operators or differentials, is said to be a chain complex, if for each n 2 Z the boundary relation @n 1 ı@n D 0 holds. We associate

to a chain complex C the modules

Zn D Zn.C / D Ker.@n W Cn ! Cn 1/;

Bn D Bn.C / D Im.@nC1 W CnC1 ! Cn/; Hn D Hn.C / D Zn=Bn:

We call Cn (Zn, Bn) the module of n-chains (n-cycles, n-boundaries) and Hn the n-th homology module of the chain complex. (The boundary relation @@ D 0

implies Bn Zn, and therefore Hn is defined.) Two n-chains whose difference is a boundary are said to be homologous. Often, in particular in the case R D Z, we talk about homology groups.

Let C D .Cn; cn/ and D D .Dn; dn/ be chain complexes. A chain map f W C ! D is a sequence of homomorphisms fn W Cn ! Dn which satisfy the commutation rules dn ı fn D fn 1 ı cn. A chain map induces (by restriction and passage to the factor groups) homomorphisms of the cycles, boundaries, and homology groups

Zn.f / W Zn.C / ! Zn.D /;

Bn.f / W Bn.C / ! Bn.D /;

f D Hn.f / W Hn.C / ! Hn.D /:

284

Chapter 11. Homological Algebra

 

 

 

 

A (short) exact sequence of chain complexes

 

 

 

 

f

g

00 ! 0

 

 

0 ! C 0 ! C ! C

 

consists of chain maps f and g such that 0 ! Cn0

fn

gn

! Cn ! Cn00 ! 0 is exact

for each n.

 

 

 

 

We certainly have the induced morphisms Hn.f / and Hn.g/. Moreover, there exists a connecting morphism @n W Hn.C 00/ ! Hn 1.C 0/, also called boundary

operator, which is induced by the correspondence f 1

dn

ı

g 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1 ı

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cn

gn

Cn00 3 z00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z0 2 Cn0 1

 

fn 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cn 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.3.1) Lemma. For a cycle z00

2 Cn00

with pre-image z under gn the relation

gn

 

1dnz

D

d 00gnz

D

d 00z00

D

0 and exactness shows that there exists z0 with

 

 

n

n

 

 

 

!7

z0 induces a well-defined homomorphism

dn.z/ D fn 1.z0/. The assignment z00

@n W Hn.C 00/ ! Hn 1.C 0/.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. The relation fn

 

2d 0

z0

D

dn

 

1fn

 

1z0

D

dn

 

1dnz

D

0 and the injectivity

of fn 2 show that z0

 

n 1

 

 

 

 

 

 

 

 

 

 

is a cycle.

 

If we choose another pre-image z C fnw0 of z00,

then we have to replace z0 by z0 C dn0 w0, so that the homology class of z0 is welldefined. Finally, if we change z00 by a boundary, we can replace z by the addition

of a boundary and hence dnz does not change.

 

 

 

 

(11.3.2) Proposition. The sequence

 

 

 

 

 

f

g

00

@n

.C

0/ !

! Hn.C 0/ ! Hn.C / ! Hn.C

/ ! Hn 1

is exact.

Proof. The boundary operator dn W Cn ! Cn 1 induces a homomorphism dn W Kn D Cn=Bn ! Zn 1;

and its kernel and cokernel are Hn and Hn 1. By (11.2.3) and (11.2.4) the rows of the next diagram are exact.

 

 

Kn0

 

 

fn

 

 

Kn

 

 

gn

Kn00

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dn0

 

 

 

 

 

dn

 

 

 

 

dn00

 

 

 

 

 

 

 

 

 

 

 

fn 1

 

 

 

 

 

gn 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

Z0

 

 

Zn

1

Z00

 

 

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

n

!

 

 

 

 

! n

!

 

n 1

!

 

 

!

n 1

The associated sequence (11.2.6) H 0

 

 

 

Hn

H 00

@

 

H 0

 

 

Hn

1

 

H 00

is the exact homology sequence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.4. Cochain complexes

285

Let f; g W C D .Cn; cn/ ! D D .Dn; dn/ be chain maps. A chain homotopy s from f to g is a sequence sn W Cn ! DnC1 of homomorphisms which satisfy

dnC1 ı sn C sn 1 ı cn D gn fn:

(This definition has two explanations; firstly, one can define “chain homotopy” in analogy to the topological definition by using the chain complex analogue of the

unit interval; secondly, it codifies the boundary relation of a geometric homotopy.) We call f and g homotopic or chain homotopic, if there exists a chain homotopy

s from f to g, in symbols s W f ' g. “Chain homotopic” is an equivalence relation on the set of chain maps C ! D; the data s W f ' g and t W g ' h

imply .sn C tn/ W f ' h. This relation is also compatible with composition; if s W f ' f 0 W C ! D and t W g ' g0 W D ! E, then .gnC1sn/ W gf ' gf 0 and

.tnfn/ W gf ' g0f . We call f W C ! D a chain equivalence, if there exists a chain map g W D ! C and chain homotopies fg ' id and gf ' id.

(11.3.3) Proposition. Chain homotopic maps induce the same morphisms between the homology groups.

Proof. Let x 2 Cn be a cycle. The homotopy relation gn.x/ fn.x/ D dnC1sn.x/ shows that fn.x/ and gn.x/ are homologous.

11.4 Cochain complexes

Let C D .Cn; @n/ be a chain complex of R-modules. Let G be another R-module. We apply the functor HomR. ; R/ to C and obtain a chain complex C D .C n; ın/ of R-modules with C n D HomR.Cn; R/ and the R-linear map

ın W C n D HomR.Cn; R/ ! HomR.CnC1; R/ D C nC1

defined by ın.'/ D . 1/nC1' ı @nC1 for ' 2 Hom.Cn; R/.

For the choice of this sign see 11.7.4. The reader will find different choices of signs in the literature. Other choices will not effect the cohomology functors. But there seems to be an agreement that our choice is the best one when it comes to

products.

Now some “co” terminology. A cochain complex C D .C n; ın/ is a Z-

graded module .C n j n 2 Z/ together with homomorphisms ın W C n ! C nC1, called coboundary operators or differentials1, such that ınC1ın D 0. We set

Zn D Ker ın; Bn D Im ın 1; H n D Zn=Bn

and call C n; Zn; Bn the module of n-cochains, n-cocycles, n-coboundaries, and

H n the n-th cohomology module of the cochain complex.

1An important cochain complex arises from the exterior differentiation of differential forms. So one should not use a “co” word here.

286 Chapter 11. Homological Algebra

11.5 Natural Chain Maps and Homotopies

Let C be an arbitrary category and CHC the category of chain complexes .Cn; cn/ of abelian groups with Cn D 0 for n < 0 and chain maps. A functor F W C ! CHC

F

F

FW

 

!

Z- MOD and natural transformations

consists of a family of functors Fn

C

 

dn W Fn ! Fn 1 such that dn 1 ıdn

D 0. A natural transformation ' W F ! G

between such functors is a family of natural transformations '

n W

F

n !

G

n

such

G

F

 

 

 

 

 

 

is

that dn

'n D 'n 1dn . A natural chain homotopy s W ' '

from ' to

a family sn W Fn ! GnC1 of natural transformations such that

dnGC1 ı sn C sn 1 ı dnF D n 'n:

A functor Fn W C ! Z- MOD is called free if there exists a family ..Bn;j ; bn;j / j j 2 J.n// of objects Bn;j of C (called models) and elements bn;j 2 Fn.Bn;j / such that

Fn.f /.bn;j /; j 2 J.n/; f 2 HomC .Bn;j ; X/

is for each object X of C a Z-basis of Fn.X/. A natural transformation 'n W Fn ! Gn from a free functor Fn into another functor Gn is then determined by the values 'n.bn;j / and the family of these values can be fixed arbitrarily in order to obtain a natural transformation. We call F free if each Fn is free. We call G acyclic (with respect to the families of models for F ) if the homology groups Hn.G .Bn;j // D 0 for n > 0 and each model Bn;j .

(11.5.1) Theorem. Let F be a free and G be an acyclic functor. For each natural transformation 'x W H0 ı F0 ! H0 ı G0 there exists a natural transformation ' W F ! G which induces 'x. Any two natural transformations ' and with this property are naturally chain homotopic ([57]).

Proof. We specify a natural transformation '0 by the condition that '.b0;j / rep-

resents the homology class 'Œbx 0;j . Let now 'i W Fi ! Gi be natural transformations .0 i < n/ such that diG 'i D 'i 1diF for 0 < i < n. Consider the

elements 'n 1dnF bn;j 2 Gn 1.Bn;j /. For n D 1 this element represents 0 in H0, by the construction of '0. For n > 1 we see from the induction hypothesis

that d G

'n

 

1d F bn;j

 

D

'

 

 

2d F

d F bn;j

DF

0.

 

Since G

 

is acyclic we find

n 1

 

 

n

 

 

 

n G

 

 

n 1

 

n

 

 

 

 

 

 

 

 

gn;j 2 Gn.Bn;j / such that dn

 

gn;j

D 'n 1dn

bn;j . We specify a natural trans-

formation

 

 

the conditions '.b

n;j

/

D

g

n;j

. This transformation then satisfies

G

 

' by F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dn 'n D 'n 1dn . This finishes the induction step.

 

 

 

 

 

 

 

Let now ' and

 

be given. Then

0.b0;j / '0.b0;j / D d1G c0;j for some

c0;j , since

 

0.b0;j / and '0.b0;j / represent the same homology class. We define

the transformation s

0 W

 

0

!

 

 

 

1

 

 

 

 

 

G

 

 

 

 

0

F

 

D

 

c0;j . Suppose now

 

 

F

 

 

 

G

 

by the condition s

 

.b0;j

/

 

 

 

that sn W Fn ! GnC1 are given such that diC1si C si 1di

D

 

i 'i for 0 i < n

 

 

 

 

 

11.6. Chain Equivalences

 

287

(and s 1 D 0). We compute with the induction hypothesis

 

 

 

 

 

 

 

 

 

dnG . n 'n sn 1dnF /

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

n 1dnF 'n 1dnF . n 1dnF 'n 1dnF sn 2dnF 1/dnF D 0:

 

Thus, by acyclicity, we can choose cn;j 2 GnC1.Bn;j / such that

 

 

 

 

 

 

 

 

dnGC1cn;j D . n 'n sn 1dnF /.bn;j /:

 

 

 

 

 

 

 

 

We now specify a natural

transformation

sn W

F

n !

G

nC1

by s

n

.b

n;j

/

D

c

n;j

. It

G

 

 

F

 

 

 

 

then has the required property dnC1sn D

n 'n sn 1dn .

 

 

 

 

 

 

 

Problems

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Let F0

F1 be a chain complex of free R-modules Fi and D0

 

D1

 

an

exact sequence of R-modules. A chain map .' W Fi ! Di j i 2 N0/ induces a homomorphism H0.' / W H0.F / ! H0.D /. Given a homomorphism ˛ W H0.F / ! H0.D0/ there exists up to chain homotopy a unique chain map .'i / such that H0.' / D ˛. This can be obtained as a special case of (11.5.1).

The reader should now study the notion of a projective module (one definition is: direct summand of a free module) and then show that a similar result holds if the Fi are only

assumed to be projective.

 

 

 

 

An exact sequence of the form 0

A

P0

P1

with projective modules

Pi is called a projective resolution of the module A. The result stated at the beginning says that projective resolutions are unique up to chain equivalence. (Fundamental Lemma of

homological algebra). Each module has a free resolution.

11.6 Chain Equivalences

A chain map which induces an isomorphism of homology groups is under certain circumstances a chain equivalence. This is one of the results of this section.

The notion of a chain homotopy can be used to develop a homotopy theory of chain complexes in analogy to the topological homotopy theory.

We have the null complex; the chain groups are zero in each dimension. A chain complex is called contractible if it is chain equivalent to the null complex, or

equivalently, if the identity is chain homotopic to the null map. A chain complex is said to be acyclic if its homology groups are zero.

Let f W .K; d K / ! .L; d L/ be a chain map. We construct a new chain complex

Cf , the mapping cone of f , by

.Cf /n D Ln ˚ Kn 1;

d Cf .y; x/ D .d Ly C f x; d K x/:

This can also be written in matrix form

d K

x

:

x 7! 0

y

d L

f

y

 

Соседние файлы в папке топология