Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
51
Добавлен:
16.04.2015
Размер:
2.05 Mб
Скачать

Схема Яблонского

Quantum yield and life-time of fluorescence

Quantum yield of fluorescence, Ff, is defined as:

 

number of photons emitted

f

 

number of photons absorbed

 

 

Another definition for f is

 

kr

f

k

 

 

where kr is the radiative rate constant and k is the sum of the rate constants for all processes that depopulate the S1 state.

In the absence of competing pathways f=1

Radiative lifetime,

r, is related to kr

 

1

r

 

kr

 

 

 

 

 

The observed fluorescence lifetime, is the average time the molecule spends in the excited state, and it is

1

f

k

Laws of Luminescence:

Stokes’ Law of Luminescence: a law, set forth by G. G. Stokes in 1852, stating that the wavelength of photoluminescence is greater than the wavelength of the exciting light. Stokes’ law is not always obeyed. In many cases anti-Stokes lines, whose wavelengths are shorter than the wavelength of the exciting light, are observed in photoluminescence spectra.

(Закон Стокса: люминесценция смещена в длинноволновую сторону относительно длины волны возбуждающего света)

Kasha’s rule: Fluorescence comes mostly from the lowest singlet state

(Правило Коши: интенсивность флуоресценции из высших синглетных состояний мала по сравнению с флуоресценцией из состояния S1)

Vavilov’s law: Quantum yield is independent on excitation wavelength

(закон Вавилова: квантовый выход люминесценции постоянен при изменении в широких пределах длины волны возбуждающего света в стоксовой области)

Mirror image rule: Fluorescence emission spectrum is mirror image of absorption spectrum (Закон зеркального отражения: спектр люминесценции зеркально симметричен спектру поглощения)

Fluorescence intensity

The fluorescence intensity (F) at a particular excitation (lx) and emission wavelength (lm) will depend on the absorption and the quantum yield:

where,

F( ex , em ) I A ( ex )

I ( em )

IA – light absorbed

 

 

– quantum yield

 

 

I – light emitted

 

 

From the Beer-Lambert law, the absorbed intensity for a dilute solution (very small absorbance)

 

I A (

ex )

 

2.3

I0

( ex ) c l

where,

for

(

 

) c

l

1

Io – Initial intensity

ex

– molar extinction coefficient

 

 

 

 

 

 

 

 

 

 

 

c – concentration

 

 

 

 

 

 

l– path length

 

 

 

 

 

 

The fluorescence intensity (F) at a particular excitation ( x) and emission wavelength ( m) for a dilute solution containing a fluorophore is:

where,

F( ex , em ) Io

( ex ) c l

I ( em ) Z

Z – instrumental factor

Io – incident light intensity

 

 

 

– molar extinction coefficient

 

 

 

c = concentration

 

 

 

l – path length

 

 

 

Fluorescence spectra

F( ex , em ) Io ( ex ) c l I ( em ) Z

Emission spectrum

Hold excitation wavelength fixed, scan emission

Reports on the fluorescence spectral profile

Excitation spectrum

Hold emission wavelength fixed, scan excitation

Reports on absorption structure

Fluorescence Intensity Fluorescence Intensity

Fixed Excitation Wavelength

Emission Wavelength (nm)

Fixed Emission Wavelength

Excitation Wavelength (nm)

Emission spectrum

Excitation-emission matrix

Fluorescence Intensity

Fixed Excitation Wavelength

 

Emission Wavelength (nm)

Excitation Wavelength (nm)

Emission Wavelength (nm)

550

 

 

 

 

 

 

530

 

 

 

 

 

2.216e+007

 

 

 

 

 

 

510

 

 

 

 

 

1.575e+007

490

 

 

 

 

FAD

9.335e+006

470

 

 

 

 

 

 

 

 

 

 

 

450

 

 

 

 

 

2.923e+006

Excitation(nm)370

 

 

 

 

 

 

430

 

 

 

 

 

1.761e+006

410

NADH

 

 

 

 

 

 

 

 

 

 

390

 

 

 

 

 

1.120e+006

350

 

 

 

 

 

4.785e+005

 

 

 

 

 

 

330

Tryp.

 

 

 

 

1.947e+005

310

 

 

 

 

 

1.306e+005

 

 

 

 

 

 

290

 

 

 

 

 

 

270

 

 

 

 

 

6.646e+004

250

300

350

400

450 500 550 600 650 700 9.767e-001

 

 

 

 

 

Emission(nm)

 

TCL-1

Courtesy of N. Ramanujam

 

 

 

 

 

 

 

FAD

FADH2

–Endogenous Fluorophores

amino acids structural proteins

enzymes and co-enzymes vitamins

lipids porphyrins

–Exogenous Fluorophores

Cyanine dyes Photosensitizers

Molecular markers – GFP, etc.

GFP and gene expression

Соседние файлы в папке Кононов