
Кононов / 5
.pdf
The Instrument Response Function
Very simple concept: apply a delta function input to the system – what is the output (i.e. the system response)?
(x) |
|
system |
h(x) |
|
|
|
|||
|
|
|
||
h = response of the system to delta function: h(x) |
(x) |
|||
x = time: h(t) |
|
(t) - impulse response function (переходная функция) |
||
x = coordinate: |
h(x) |
(x) - point spread function – PSF (функция размытия точки) |
||
x = frequency: |
h( ) |
( ) - frequency response function (передаточная функция) |


IRF of two linear systems:
The output of a linear system is the convolution of the input and the impulse response (Green‘s function):
Example:

Molecular terms

Intensity & Spape of Spectral Lines
What is the strength of an absorption line?
Absorption: D = - lg T , T=I/I0
The Bouguer-Lambert-Beer Law:
A = ε∙C∙L

Коэффициенты Эйнштейна
The Interaction of Light and Matter I: A simple classical picture

A=1/ 0

The Einstein Coefficients [A. Einstein, Z. Phys.,18, 121 (1917)]

The Bouguer-Lambert-Beer Law
B
Absorption+desactivation: A
hν ∙[hν]∙[n1]∙B= [n2]∙A |
[n2 |
] |
B h |
[h ] |
|
[n1 |
] |
|
A |
||
|
|
||||
|
|
|
d[hν] = [hν]∙ [n1]∙B∙ hν dt
d[hν] = [hν]∙ C∙B∙Na (1/1000)∙ hν ∙dx/c
d[h |
] |
|
dI |
C |
BN A |
h /1000 |
dx |
||||
[h |
] |
|
|
I |
|
|
c |
|
|||
|
|
|
|
|
|
||||||
|
|
|
|
|
|
BNA h |
/1000 |
C l |
|||
|
|
|
|
|
|
|
c |
|
|
||
I |
|
|
I0e |
|
|
|
|
I |
|||
|
|
|
|
|
|
|
n2
|
|
|
|
|
|
|
|
|
B |
|
|
|
|
|
|
|
h |
|
|
n1 |
|
n |
2 |
[n1]+ [n2]=C |
|
|
|
|
|
|
|
A |
|
|||||
n1 |
|
|
|
|
|
|
||||||
|
|
C [n1 ] B h |
|
[h |
] |
→ [n1] ≈ C |
||||||
|
|
|
|
[n1 ] |
|
|
A |
|
||||
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
(A>> B hν [hν]) |
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
[hν]+d[hν] |
|
|
|
|||
|
[hν] |
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dx
I |
010 |
Cl |
I I |
010 |
A |
|
|||||
|
|
|
|||
|
|
|
|
||
|
|
|
|
|
|