Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
51
Добавлен:
16.04.2015
Размер:
2.56 Mб
Скачать

Single molecule spectroscopy

Schematic representation of a (simple) confocal microscope setup. From http://www.microscopyu.com

Confocal scanning microscopy. A parallel laser beam is deflected by a dichroic mirror and focused by a high-numerical aperture objective onto a diffraction-limited spot. The fluorescence signal then passes through the dichroic mirror, is focused onto a pinhole and finally reaches the (point) detector (i.e. a photomultiplier or an avalanche photodiode [APD]). The excitation volume is confined in the x–y plane by focusing; the z-resolution in the detection pathway is provided by the aperture, which blocks light emanating from regions not in the immediate vicinity of the focal volume. Sequential scanning in two or even three dimensions is controlled by a

computer, which also calculates the final image.

Fluorescence Correlation Spectroscopy

Fluorescence correlation spectroscopy (FCS) has recently experienced growing popularity in biochemical and biophysical applications due to significantly improved signal-to-background ratios. The parameters determinable by FCS in intracelluar environment include:

Fluorescent species (e.g., GFP, beads, dye molecules) diffusion coefficients

Fluorescent molecules concentration

Kinetic information of binding and aggregation processes

Kinetic information of conformation transitions

 

 

Sample

 

 

Autocorrelation Function

 

 

 

 

Objective

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dichroic Mirror

 

 

 

 

 

 

 

Ti:Sapphire

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APD

 

 

 

 

 

Laser

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correlator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dichroic Mirror

 

 

 

 

 

 

 

 

 

Autocorrelation Function

G( )

F(t) F(t

)

 

 

 

 

 

 

F(t) F(t) F(t)

F(t)

2

 

 

 

 

 

 

 

 

 

 

 

 

Factors influencing the fluorescence signal:

Q = quantum yield and detector sensitivity (how bright is our probe). This term could contain the fluctuation of the fluorescence intensity due to internal processes

F(t) Q dr W (r)C(r,t)

W(r) describes our observation volume

C(r,t) is a function of the fluorophore concentration over time. This is the term that contains the

“physics” of the diffusion processes

(kcps)

19.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intensity

19.6

 

 

 

 

 

 

 

19.4

 

 

 

 

 

 

 

19.2

 

 

 

 

 

 

 

Detected

 

 

 

 

 

 

 

19.0

 

 

 

 

 

 

 

18.8

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

 

Time (s)

0.4

 

 

 

 

0.3

 

 

 

 

0.2

 

 

 

 

G( )

 

 

 

 

0.1

 

 

 

 

0.0

 

 

 

 

10-9

10-7

10-5

10-3

10-1

 

 

Time(s)

 

 

Various parameters can be extracted from the autocorrelation curves. The most prominent are the diffusion coefficient (a–d) (and hence the

approximate size) and the concentration (e–h) of fluorescent molecules. The half-value decay time provides a good estimate of the mean diffusion time (d), from which the diffusion coefficient can be determined. With increasing mass, the residence time of the molecules in the focal volume is increasing (a–c) and thus the corresponding autocorrelation curves shift to longer diffusion times (d). The amplitude, G(0), is proportional to the inverse particle number and thus to the concentration of the fluorescent particles (e–h). An increase in particle number leads to an increase in average fluorescence (e–g), but the signal change caused by one specific molecule entering or leaving the observation volume becomes less pronounced. This is illustrated in (e,f) by the maximal deviation (arrows) of the idealized fluorescence signal from the mean value (straight line).The autocorrelation amplitude, however, is a measure of fluctuation strength and thus decreases for higher concentrations (h).

Why Is G(0) Proportional to 1/Particle Number?

A Poisson distribution describes the statistics of particle occupancy fluctuations. In a Poissonian system the variance is proportional to the average number of fluctuating species:

 

Particle_Number

Dispersion

 

 

 

 

 

 

G( )

F (t) F (t

)

G(0)

F (t)2

F (t)

F (t)

2

G(0)

Dispersion

1

F (t) 2

 

F (t) 2

F (t) 2

 

N 2

N

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

<N> = 2

 

0.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G(t)

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

0.0

 

 

 

 

 

 

 

<N> = 4

 

10 -7

10 -6

 

10 -5

10 -4

10 -3

 

 

 

 

 

 

Time (s)

 

 

 

 

 

 

 

 

 

 

 

 

P

P(N F ,T )

FT N e FT

N!

Standart deviation ( ) FT

Average value <N>= FT

Approaches a Gaussian distribution as N becomes large

FT=1

1

N n Ni

FT=4

FT=10

N

Antibody - Hapten Interactions

Binding site

Binding site

 

carb2

Mouse IgG: The two heavy chains are shown in yellow and light blue. The two light chains are shown in green and dark blue..J.Harris, S.B.Larson, K.W.Hasel, A.McPherson, "Refined structure of an intact IgG2a monoclonal

antibody", Biochemistry 36: 1581, (1997).

Digoxin: a cardiac glycoside used to treat congestive heart failure. Digoxin competes with potassium for a binding site on an enzyme, referred to as potassium-ATPase. Digoxin inhibits the Na-K ATPase pump in the myocardial cell membrane.

Autocorrelation

curves:

Anti-Digoxin Antibody (IgG) Binding to Digoxin-Fluorescein

Digoxin-Fl•IgG

(99% bound)

Digoxin-Fl•IgG

(50% Bound)

Digoxin-Fl

Binding titration from the

Bound

 

autocorrelation analyses:Ligand

 

Fraction

120

 

 

 

 

100

 

 

 

 

80

 

 

 

 

60

 

 

 

 

40

 

 

Kd=12 nM

 

 

 

 

 

20

 

 

 

 

0

 

 

 

 

10 -10

10 -9

10 -8

10 -7

10 -6

S. Tetin, K. Swift, & , E, Matayoshi , 2003

[Antibody] free (M)

Raman and IR spectroscopy I. IR spectroscopy

Соседние файлы в папке Кононов