Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Image_slides / part4_pca

.pdf
Скачиваний:
86
Добавлен:
16.04.2015
Размер:
826.28 Кб
Скачать

Dimensionality Reduction

December 7, 2012

1/36

Objective

Reduce data from 3D to 2D

2/36

Motivating Example

3/36

Motivating Example

4/36

Motivating Example

5/36

Principal Component Analysis (PCA) problem formulation

6/36

Principal Component Analysis (PCA) statistical problem formulation

1;1

0

 

I Covariation matrix for (a) 0

2;2

1;1

1;2

 

I Covariation matrix for (c) 2;1

2;2

7/36

Covariance

01

 

 

j

 

 

j

 

j

 

X = x1 x2

 

xn

 

 

 

j

 

 

j

 

j

 

Let each x

 

 

 

mean

@

1

 

i

has zero

 

A

i;j =

 

xiT xj

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

Ii = j - variance

Ii <> j - covariance

Iif i;j = 0 then xi and xj tottaly uncorrelated

SX = n 1 1 X T X - covariance matrix

8/36

Change of Basis

ILet P be the n n matrix. And each row is basis vector of new subspace

PX =

0

p2

1

 

xj1 xj2

 

xjm

 

 

 

p1

 

0 j

 

 

 

1

 

B

 

C

j

 

j

 

B

pn

C@

 

 

A

 

@

 

A

 

 

 

 

 

 

where each jjpi jj = 1

IEach product pi xj - is the length of progection of each xj onto vector pi

IIn other words each product pi xj is the coordinate on axis pi

9/36

Desired Covariance Properties

IWe would like to nd matrix P such that the covariances between transformed feature vectors to be zero.

Sy = n 1 1Y T Y , where Y = PX

IIn this case we eliminate all redundancy.

IThe rows of matrix P are the principal components

10/36

Соседние файлы в папке Image_slides