
- •Федеральное агентство по образованию
- •А. Ю. Дёмин, а. В. Кудинов
- •Введение
- •Растровая и векторная графика
- •Способы представления изображений в памяти эвм
- •Параметры растровых изображений
- •Представление цвета в компьютере
- •Цветовые модели
- •Системы управления цветом
- •Графические файловые форматы
- •Растровые алгоритмы
- •Алгоритмы растеризации
- •Растровое представление отрезка. Алгоритм Брезенхейма
- •Растровая развёртка окружности
- •Закраска области, заданной цветом границы
- •Заполнение многоугольника
- •Методы устранения ступенчатости
- •Метод увеличения частоты выборки
- •Метод, основанный на использовании полутонов
- •Простейшие методы обработки изображений
- •Яркость и контраст
- •Масштабирование изображения
- •Преобразование поворота
- •Цифровые фильтры изображений
- •Компьютерная геометрия
- •Двумерные преобразования
- •Однородные координаты
- •Двумерное вращение вокруг произвольной оси
- •Трехмерные преобразования и проекции
- •2.Трехмерное изменение масштаба.
- •3. Трехмерный сдвиг
- •4.Трехмерное вращение
- •Проекции
- •Математическое описание плоских геометрических проекций
- •Изображение трехмерных объектов
- •Представление пространственных форм
- •Полигональные сетки
- •Явное задание многоугольников
- •Задание многоугольников с помощью указателей в список вершин
- •Явное задание ребер
- •Удаление невидимых линий и поверхностей
- •Введение
- •Алгоритм плавающего горизонта
- •Алгоритм Робертса
- •Определение нелицевых граней
- •Удаление невидимых ребер
- •Алгоритм, использующий z–буфер
- •Метод трассировки лучей (raycasting)
- •Алгоритмы, использующие список приоритетов
- •Алгоритм Ньюэла-Ньюэла-Санча для случая многоугольников
- •Алгоритм Варнока (Warnock)
- •Алгоритм Вейлера-Азертона (Weiler-Atherton)
- •Методы закраски
- •Диффузное отражение и рассеянный свет
- •Зеркальное отражение
- •Однотонная закраска полигональной сетки
- •Метод Гуро
- •Метод Фонга
- •Поверхности, пропускающие свет
- •Детализация поверхностей
- •Детализация цветом
- •Детализация фактурой
- •Библиотека OpenGl
- •Особенности использования OpenGl в Windows
- •Основные типы данных
- •Рисование геометрических объектов
- •Работа с буферами и задание цвета объектов
- •Задание графических примитивов
- •Рисование точек, линий и многоугольников
- •Преобразование объектов в пространстве
- •Преобразования в пространстве
- •Получение проекций
- •Задание моделей закрашивания
- •Освещение
- •Полупрозрачность. Использование α-канала
- •Наложение текстуры
- •Аппаратные средства машинной графики
- •Устройства ввода
- •Сканеры
- •Основные характеристики
- •Фирмы-производители
- •Дигитайзеры
- •Принцип действия
- •Основные характеристики
- •Фирмы-производители
- •Цифровые фотокамеры
- •Принцип действия
- •Фирмы-производители
- •Практические задания
- •Обработка растровых изображений вAdobePhotoshop
- •Создание векторного рисунка вCorelDraw
- •Преобразования на плоскости
- •Преобразования в пространстве. Проекции
- •БиблиотекаOpenGl
- •Темы рефератов
- •Литература
- •Оглавление
- •1. Растровая и векторная графика 4
- •2. Растровые алгоритмы 26
- •3. Компьютерная геометрия 49
- •8. Аппаратные средства машинной графики 137
- •9. Практические задания 143
Представление пространственных форм
Во многих приложениях машинной графики возникает потребность в представлении трехмерных форм: при проектировании самолетов, при восстановлении трехмерных тел по изображениям их поперечных сечений, построенных с помощью машинной томографии, при автоматической сборке и во многих других. Нам уже известно, как изображаются пространственные объекты, когда их удается представить в виде последовательности отрезков прямых, заданных в мировых координатах. Совокупность отрезков не является адекватным описанием объекта, поскольку отрезки сами по себе не определяют поверхностей. В то же время информация о поверхностях необходима для проведения вычислений, связанных со стиранием скрытых частей изображения, для определения объемов и т. д. Таким образом, мы приходим к выводу, что для описания трехмерных форм необходимы поверхности – примитивы более высокого уровня, чем отрезки.
Мы остановим внимание на двух широко распространенных трехмерных представлениях поверхностей в пространстве: полигональных сетках и параметрических бикубических кусках. Полигональной сеткойявляется совокупность связанных между собой плоских многоугольников. Наружную форму большинства зданий можно легко и естественно описать с помощью полигональной сетки (так же, как мебель и комнаты). Полигональные сетки применяются также для представления объектов, ограниченных криволинейными поверхностями. Однако недостатком этого метода является его приблизительность. Видимые ошибки в таком представлении можно сделать сколь угодно малыми, используя все большее число многоугольников для улучшения кусочно-линейной аппроксимации объекта, но это приведет к дополнительным затратам памяти и вычислительного времени для алгоритмов, работающих с таким представлением.
Параметрические бикубические кускиописывают координаты точек на искривленной поверхности с помощью трех уравнений (по одному длях,уиz). Каждое из уравнений имеет две переменные (два параметра), причем показатели степени при них не выше третьей (отсюда название бикубический). Границами кусков являются параметрические кубические кривые. Для представления поверхности с заданной точностью требуется значительно меньшее число бикубических кусков, чем при аппроксимации полигональной сеткой. Однако алгоритмы для работы с бикубическими объектами существенно сложнее алгоритмов, имеющих дело с многоугольниками.
При использовании обоих методов трехмерное тело представляется в виде замкнутой поверхности.
Полигональные сетки
Полигональная сетка представляет собой совокупность ребер, вершин и многоугольников. Вершины соединяются ребрами, а многоугольники рассматриваются как последовательности ребер или вершин. Сетку можно представить несколькими различными способами, каждый из них имеет свои достоинства и недостатки. Для оценки оптимальности представления используют следующие критерии:
Объем требуемой памяти;
Простота идентификации ребер, инцидентных вершине;
Простота идентификации многоугольников, которым принадлежит данное ребро;
Простота процедуры поиска вершин, образующих ребро;
Легкость определения всех ребер, образующих многоугольник;
Простота получения изображения полигональной сетки;
Простота обнаружения ошибок в представлении (например, отсутствие ребра или вершины или многоугольника).
Рассмотрим подробнее три способа описания полигональных сеток.