
- •Heat fluxes in the atmosphere
- •Climate_Change_Attribution.
- •Heat flux notion
- •Convective and advective heat fluxes
- •Eddy heat flux
- •Eddy heat exchange differs from that of other substances. Coefficients A and K
- •Individual and local (partial) derivatives
- •Energy equation
- •1.Non-periodical T variations
- •2.Periodical T variations
- •3. Air mass moving over non- homogeneous surface
- •4. Annual T variation

Heat fluxes in the atmosphere
Heat to the atmosphere comes mainly from the underlying surface. Processes responsible for the heat transfer are:
Eddy flux |
Convective flux |
|
L.w. radiation
Evaporation |
L.w. radiation |
1

Climate_Change_Attribution. |
2 |

Heat flux notion
The quantity сpT being transferred by the air parcels in a unit of time through a unit of area facing the
transfer direction is called HEAT FLUX.
There are convective heat flux and eddy heat flux.
Convective heat flux, in turn, is divided into advective one (horizontal heat transfer) and real convective
(vertical heat transfer).
In meteorology, the horizontal heat flux is called advective flux (Qa), and the vertical one is called
convective flux (Qc).
3

Convective and advective heat fluxes
Q |
|
cp CT |
C |
|
kg m |
|
|
kg |
|
|
|
w |
|
C |
|
Q |
||||||||
|
|
|
|
|
|
|
||||||||||||||||||
|
|
3 |
|
s |
|
|
|
|
|
|
||||||||||||||
m |
|
|
2 |
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
m s |
|
|
|
Qc |
|
|
|||||
|
J |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
Q |
|
|
J |
|
|
kg |
K |
J |
|
|
|
Qa |
C |
1m² |
|||||||||
|
kg K |
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
2 |
s |
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
2 |
s |
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
kg K m |
|
|
|
m |
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
Q c |
p |
wT |
|
Qa cp CT |
||||||||||||
|
|
|
|
|
|
|
|
c |
|
|
|
|
|
|
|
|
|
|
|
|
|
Any air particle contains some amount of heat. When moving, it carries this heat along. By this way the heat is distributed in the atmosphere. However, that is not the only way for the heat distribution. Not less effective way is EDDY MIXING (EXCHANGE)
Incoming heat flux is positive, outgoing flux is negative. |
4 |
|

Eddy heat flux
Eddy heat flux is caused by wind velocity pulsation
General conditions for eddy exchange
•Permanency
•Conservation
•Passivity
Quantity сpTdoes not satisfy this conditions. Air temperature changes as the air ascending or descending. However, potential temperature satisfy.
|
|
|
|
|
|
|
|
|
Q c |
|
A |
|
c |
K |
|
a |
|
E |
p |
|
z |
p |
|
z |
z |
|
QE cp K a
5

с* с с' |
|
Qa cp c T |
103 101 100 104 |
|
|||||||||||||
с* с с' |
|
QE cp k a |
103 101 10 1 103 |
|
|||||||||||||
|
w* w w' |
|
Qc cp w T |
|
103 10 2 100 101 |
|
|||||||||||
|
cp |
103 |
|
a |
10 1 |
|
|
|
cp 103 100 103 |
|
|||||||
|
ρ |
100 |
|
|
w |
10 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
c |
101 |
|
|
Qa |
104 |
|
|
|
|
The strongest flux |
|
|
|
|||
|
|
|
|
|
|
|
|||||||||||
|
T |
100 C |
|
QE |
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
k |
101 |
|
|
Qc |
101 |
|
|
|
|
The weakest flux |
|
|
|
|||
|
|
|
|
|
|
|
|||||||||||
|
|
Along with vertical eddy flux there are horizontal fluxes. |
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
At the same level |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
QEx cp K ' |
|
|
|
|
|
|
T |
|
||||||||
|
|
|
Q c K ' |
|
|
|
T |
|
|
6 |
|||||||
|
|
x |
|
|
Ey |
p |
y |
|
x |
x |
y |
y |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Eddy heat exchange differs from that of other substances. Coefficients A and K (for eddy heat exchange) are called coefficient of eddy heat conductivity and temperature conductivity respectively.
As the stratification is stable ( a ) eddy heat flux directed downward QE 0
As the stratification is unstable ( a ) eddy heat flux directed upward QE 0
Heat influx (outflow) notion
Heat influx = incoming heat flux – outgoing heat flux |
HI Q Q |
|||||
|
Q |
Q |
|
Q |
||
|
|
|||||
|
Heat outflow |
|
||||
|
||||||
|
|
|
|
|
|
Q |
Heat influx |
|
7

Individual and local (partial) derivatives
When an air parcel moves, its state parameters are not necessarily constant; they are function of coordinates and time.
F F x, y, z, t
For the moving parcel, the coordinates, in turn, are functions of time. |
||||||||
x x t ; y y t ; z z t |
dx |
u; dy |
v; dz |
w |
||||
|
|
|
|
dF |
dt |
dt |
dt |
|
|
z |
y |
F F dx F dy F dz |
|||||
|
|
|
|
|
|
|||
|
|
|
x Local derivative |
dt |
t |
x dt |
y dt |
z dt |
|
|
|
dF |
F |
u |
F |
v |
F |
w |
F |
dt |
t |
|
x |
|
y |
|
z |
Convective derivative
Advective derivative
Individual derivative |
8 |

Energy equation
Temperature variation is of prime interest for meteorologists. It depends on heat influx. It can be determined on the base of the energy conservation equation.
dq cp dT |
|
RT dP |
Heat influx: |
dq |
E r ph k |
||||||
dt |
dt |
|
P dt |
dt |
|
J |
|
||||
1m2 |
(Q dQ)z |
|
Qz Q dQ z dQz |
|
Heat influx |
||||||
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
kg s |
|
|
|
z dz |
|
dQz Qz dz |
|
|
|
|
unit |
||
|
|
|
|
|
E r ph k |
||||||
|
|
z |
|
|
|
||||||
|
|
|
|
z |
|
|
|
|
|
|
|
|
|
Qz Mass of the volume is 1 m2 dz dm |
|
|
|
||||||
|
|
|
dQz |
dQz |
1 |
Qz dz |
|
|
|||
|
|
|
|
|
|||||||
|
|
|
|
dm |
dz |
z dz |
|
|
9

dQz dQz 1 Qz dm dz z
The same reasoning can be applied for horizontal heat fluxes
|
1 |
|
Q |
x |
Qy |
|
Q |
|
|
|
|
|
|
|
z |
divQ |
|
|
|
|
||||||
|
|
|
x |
y |
|
|
|
|
|
|
|
z |
|
Q |
|
c A' |
Q |
|
|
QE |
|
cp A' |
Q |
|
|
QE z cp A |
Q |
|||||||||||
|
|
y |
|
z |
||||||||||||||||||||
|
|
y |
|
|||||||||||||||||||||
|
x |
|
|
|||||||||||||||||||||
E |
x |
|
|
|
p |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
сp |
|
|
|
|
Q |
x |
|
|
Qy |
|
|
|
Q |
|
|
|
|||||||
|
|
|
|
|
|
|
A' |
|
|
|
A' |
|
|
|
|
|
|
A |
|
|
z |
Eddy heat influx |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
x |
|
x |
y |
|
|
y |
|
z |
|
|
z |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
Since the horizontal exchange is much smaller the vertical one, for practical purposes this formula can be simplified
|
сp |
|
A |
Qz |
cp |
|
K |
Qz |
|
||
|
|
|
|
|
|
|
|
||||
|
z |
z |
z |
z |
10 |
||||||
|
|
|
|
|
|

dq |
|
dT |
|
RT dP |
|
|
|
dP |
|
P |
|
u |
|
P |
v |
P |
w |
P |
||||||||||||||
dt cp dt |
|
P dt |
|
|
|
dt |
t |
|
|
|
x |
y |
z |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
∆t |
10 |
|
|
s |
V |
10 |
|
m/s |
P 10 |
2 |
|
10 2 |
|
|
|
|
|
|
|
|
||||||||||||
|
|
4 |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
∆P |
102 |
|
Pa |
W |
10 2 |
m/s |
t |
|
104 |
|
|
|
|
|
|
|
|
|
1 102 |
|
|
|
|
|
||||||||
∆Pz |
104 |
|
Pa |
∆x |
105 |
m |
|
|
P |
|
|
|
P |
|
|
|
|
2 |
|
|||||||||||||
∆T |
100 |
|
|
K |
∆y |
105 |
m |
u |
x |
v |
|
y |
|
10 105 10 |
|
|
|
|||||||||||||||
∆Tz |
|
1 |
|
|
K |
∆z |
|
3 |
m |
w |
P |
10 |
2 104 |
|
1 |
|
|
|
|
|
||||||||||||
|
10 |
|
|
|
|
10 |
|
|
z |
|
|
|
103 10 |
|
|
|
|
|
|
|
||||||||||||
dP |
w |
P |
|
|
All members of this |
dT |
T |
|
|
|
|
|
|
T |
|
T |
|
|
|
|
T |
|||||||||||
dt |
z |
|
formula have the same |
|
dt |
t |
|
|
|
u x v y w z |
||||||||||||||||||||||
|
|
|
order of magnitude |
|
|
|
|
|
||||||||||||||||||||||||
Substituting |
and |
|
|
|
T |
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
10 |
4 |
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
t |
|
104 |
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|||||||||||||
into energy equation, we |
|
|
u |
T |
v |
T |
|
|
1 |
10 |
4 |
|
|
|||||||||||||||||||
|
|
|
|
obtain |
|
|
|
|
|
|
|
|
|
|
|
|
10 |
5 |
|
|
|
|
||||||||||
|
See the next slide |
|
|
|
|
x |
|
|
y T |
|
102 101 |
10 |
4 |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
w |
z |
10 |
|
103 |
11 |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

T |
u |
T |
v |
T |
w |
T |
|
RT |
w |
P |
|
E r ph k сp |
t |
x |
y |
|
P |
z |
|||||
|
|
|
|
z |
|
|
( |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
1 |
|
|
|
T |
u |
T |
v |
T |
w |
|
T |
|
|
|
RT |
w |
P |
|||||||||
E |
|
r |
|
ph |
|
k |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
cp |
|
|
t |
|
|
x |
|
y |
|
|
|
z |
|
|
сp P z |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
This quantity is |
|
|
RT w |
P w |
RT g w gRT |
|
P |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
neglected |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
|
small and can be |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
сp P z |
|
|
cp P |
|
|
|
cp P RT |
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
g |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
a |
|
|
|
|
E |
|
|
K |
|
|
|
|
T |
w a w a |
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
z |
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
|
|
|
cp |
|
|
|
|
|
|
|
|
|
|
|
|
|
z |
|
|
|
|
w z |
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
After substituting into the basic equation |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
and solution with respect to |
T |
, we obtain |
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
t |
|
|
|
|
|
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
T |
|
|
|
|
T |
|
|
|
|
|
T |
|
w |
|
|
|
|
|
|
|
|
r ph |
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
u |
|
|
|
v |
|
|
|
|
|
|
K |
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
t |
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
a |
|
|
|
z |
|
|
z |
|
|
|
|
cp |
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

T |
|
T |
|
T |
w |
|
|
|
|
r ph |
|
|
u |
|
v |
|
|
K |
|
|
|
|
|
|
|
|
|
|
|
||||||
t |
|
x |
|
|
a |
z |
|
z |
|
cp |
|
|
|
y |
|
|
|
T |
|
T |
v |
T |
|
|
|
u |
|
|
|
|
x |
|
|
||
|
t ad |
|
|
y |
Air temperature variation due to advection
|
|
T |
w a |
|||||||
|
|
|
||||||||
|
|
t w |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T |
|
|
|
K |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
z |
z |
|
|
|
|||||
|
|
t E |
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
||
|
|
T |
|
r |
ph |
|
||||
|
|
|
|
|
|
|
|
|
||
|
|
|
cp |
|
||||||
|
|
t r, ph |
|
|
|
|
Air temperature variation due to vertical motion
Air temperature variation due to eddy mixing
Air temperature variation due to radiation and water phase transfer
13