
- •Адаптации к паразитическому образу жизни. Основные тенденции
- •Цикл развития паразитов и организм хозяина
- •Действие хозяина на паразита
- •Распространенность паразитизма в природе
- •Класс насекомые insecta
- •Класс Ленточные черви Cestoidea
- •Ленточные черви, жизненный цикл которых связан с водной средой
- •Ленточные черви, жизненный цикл которых не связан с водной средой
- •Ленточные черви, использующие человека в качестве окончательного хозяина
- •Ленточные черви, использующие человека в качестве промежуточного хозяина
- •Ленточные черви, проходящие в организме человека весь жизненный цикл
- •Членистоногие
- •Класс паукообразные arachnoidea
- •Отряд Клещи Acari
- •Клещи — временные кровососущие эктопаразиты
- •Клещи — обитатели человеческого жилья
- •Клещи — постоянные паразиты человека
- •Тип плоские черви plathelminthes
- •Класс Сосальщики Trematoda
- •Сосальщики с одним промежуточным хозяином, обитающие в пищеварительной системе
- •Сосальщики с одним промежуточным хозяином, обитающие в кровеносных сосудах
- •Сосальщики с двумя промежуточными хозяевами
- •Сосальщики, обитающие в кишечнике
- •Сосальщики, обитающие в желчных ходах печени
- •Сосальщики, обитающие в легких
- •Сосальщики, цикл развития которых не связан с водной средой
- •Класс Собственно круглые черви Nematoda
- •Круглые черви — геогельминты
- •Геогельминты, развивающиеся без миграции
- •Геогельминты, развивающиеся с миграцией
- •Круглые черви — биогельминты
- •Биогельминты, заражение которыми происходит при проглатывании личинок с тканями промежуточного хозяина
- •Биогельминты, передающиеся трансмиссивно
- •Природно-очаговые заболевания
- •Тип простейшие protozoa
- •Класс Саркодовые Sarcodina
- •Класс Жгутиковые Flagellata
- •Класс Инфузории Infusoria
- •Класс Споровики Sporozoa
- •Простейшие, обитающие в полостных органах, сообщающихся с внешней средой
- •Простейшие, обитающие в полости рта
- •Простейшие, обитающие в тонкой кишке
- •Простейшие, обитающие в толстой кишке
- •Простейшие, обитающие в половых органах
- •Одноклеточные паразиты, обитающие в легких
- •Простейшие, обитающие в тканях
- •Простейшие, обитающие в тканях и передающиеся нетрансмиссивно
- •Простейшие, обитающие в тканях и передающиеся трансмиссивно
- •Простейшие — факультативные паразиты человека
- •Экология питания. Ксенобиотики в пищевых продуктах. Их влияние на метаболические процессы.
- •Медицинская экология. Факторы возникновения экологически зависимых заболеваний у человека.
- •Паразитология.
- •Основы медицинской генетики. Человек как объект генетики. Медико-генетические исследования.
- •Воспроизведение на молекулярном и клеточном уровнях.
- •Наследственные и мультифакториальные болезни человека
- •Экология как наука. Антропобиоэкосистема, ее характеристика. Экология Самарской области.
- •Постанатльное развитие
- •Понятие о виде
- •Понятие о популяции
- •Современные концепции биосферы
- •Структура и функции биосферы
- •Частоты аллелей. Закон Харди — Вайнберга
- •Экологическая характеристика популяции
- •Генетические характеристики популяции
- •Элементарные эволюционные факторы
- •Мутационный процесс
- •Популяционные волны
- •Изоляция
- •Естественный отбор
- •Генетико-автоматические процессы (дрейф генов)
- •Популяция людей. Дем, изолят
- •Генетический груз в популяциях людей
- •Наследственный полиморфизм природных популяций. Генетический груз
- •Генетическое разнообразие в популяциях людей
- •Происхождение жизни
- •Происхождение эукариотической клетки
- •Возникновение многоклеточности
- •Иерархическая система. Уровни организации жизни
- •Проявление главных свойств жизни на разных уровнях ее организации
- •Клетка — элементарная единица живого
- •Клеточная теория
- •Типы клеточной организации
- •Структурно-функциональная организация эукариотической клетки
- •Поток информации
- •Внутриклеточный поток энергии
- •Внутриклеточный поток веществ
- •Жизненный цикл клетки
- •Наследственность и изменчивость — фундаментальные свойства живого
- •История формирования представлений об организации материального субстрата наследственности и изменчивости
- •Общие свойства генетического материала и уровни организации генетического аппарата
- •Генный уровень организации генетического аппарата
- •Химическая организация гена
- •Структура днк. Модель Дж. Уотсона и ф. Крика
- •Способ записи генетической информации в молекуле днк. Биологический код и его свойства
- •Самовоспроизведение наследственного материала. Репликация днк
- •Механизмы сохранения нуклеогидной последовательности днк. Химическая стабильность. Репликация. Репарация
- •Генные мутации
- •Элементарные единицы изменчивости генетического материала. Мутон. Рекон.
- •Функциональная классификация генных мутаций
- •Роль рнк в реализации наследственной информации
- •Особенности организации и экспрессии генетической информации у про- и эукариот
- •Ген — функциональная единица наследственного материала. Взаимосвязь между геном и признаком
- •Функциональная характеристика гена
- •Биологическое значение генного уровня организации наследственного материала
- •Хромосомный уровень организации генетического материала Некоторые положения хромосомной теории наследственности
- •Химический состав хромосом
- •Структурная организация хроматина
- •Морфология хромосом
- •Особенности пространственной организации генетического материала в прокариотической клетке
- •Хромосомные мутации
- •Биологическое значение хромосомного уровня организации наследственного материала
- •Геномный уровень организации наследственного материала Геном. Генотип. Кариотип
- •Самовоспроизведение и поддержание постоянства кариотипа в ряду поколений клеток
- •Механизмы поддержания постоянства кариотипа в ряду поколений организмов
- •Комбинативная изменчивость
- •Геномные мутации
- •Особенности организации наследственного материала у про- и эукариот
- •Эволюция генома Геном предполагаемого общего предка про- и эукариот
- •Эволюция прокариотического генома
- •Эволюция эукариотического генома
- •Подвижные генетические элементы
- •Роль горизонтального переноса генетического материала в эволюции генома
- •Значение сохранения дозового баланса генов в генотипе для формирования нормального фенотипа
- •Взаимодействия между генами в генотипе
Внутриклеточный поток энергии
Поток энергии у представителей разных групп организмов обеспечивается механизмами энергоснабжения —брожением, фото- или хемосинтезом, дыханием.
Центральная роль в биоэнергетике клеток животных принадлежит дыхательному обмену. Он включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, а также использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде аденозинтрифосфата (АТФ). Энергия АТФ, непосредственно или будучи перенесена на другие макроэргические соединения (например, креатинфосфат), в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ), электрическую, механическую, ре-гуляторную. Макроэргическим называют соединение, в химических связях которого запасена энергия в форме, доступной для использования в биологических процессах. Универсальным соединением такого рода служит АТФ. Основное количество энергии заключено в связи, присоединяющей третий остаток фосфорной кислоты.
Среди органелл животной клетки особое место в дыхательном обмене принадлежит митохондриям, выполняющим функцию окислительного фосфорилирования, а также матриксу цитоплазмы, в котором протекает процесс бескислородного расщепления глюкозы — анаэробный гликолиз (рис. 2.8). Из двух механизмов, обеспечивающих жизнедеятельность клетки энергией, анаэробный гликолиз менее эффективен. В связи с неполным (в отсутствие кислорода) окислением, прежде всего глюкозы, в процессе гликолиза для нужд клетки извлекается не более 10% энергии. Недоокисленные продукты гликолиза (пируват) поступают в митохондрий, где в условиях полного окисления, сопряженного с фосфорилированием АДФ до АТФ, отдают для нужд клетки оставшуюся в их химических связях энергию.
Из преобразователей энергии химических связей АТФ в работу наиболее изучена механохимическая система поперечно-полосатой мышцы. Она состоит из сократительных белков (актомиозиновый комплекс) и фермента аденозинтрифосфатазы, расщепляющего АТФ с высвобождением энергии.
Особенность потока энергии растительной клетки состоит в наличии фотосинтеза — механизма преобразования энергии солнечного света в энергию химических связей органических веществ.
Механизмы энергообеспечения клетки отличаются эффективностью. Коэффициенты полезного действия хлоропласта и митохондрий, достигая соответственно 25 и 45—60%, существенно превосходят аналогичный показатель паровой машины (8%) или двигателя внутреннего сгорания (17%).
Внутриклеточный поток веществ
Реакции дыхательного обмена не только поставляют энергию, но и снабжают клетку строительными блоками для синтеза разнообразных молекул. Ими являются многие продукты расщепления пищевых веществ. Особая роль в этом принадлежит одному из этапов дыхательного обмена — циклу Кребса,осуществля-емому в митохондриях. Через этот цикл проходит путь углеродных атомов (углеродных скелетов) большинства соединений, служащих промежуточными продуктами синтеза химических компонентов клетки. В цикле Кребса происходит выбор пути превращения того или иного соединения, а также переключение обмена клетки с одного пути на другой, например с углеводного на жировой. Таким образом, дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот.