
- •Самарский государственный медицинский университет.
- •2. Цель занятия:
- •3. Место проведения:
- •5. Оснащение:
- •6. Контрольно-учебная карта внеаудиторной подготовки к занятиям:
- •7. План проведения занятия:
- •Литература:
- •8. Приложение
- •Химические свойства атр.
- •I. Первый закон.
- •II. Второй закон.
- •Энтропия.
- •Отдельные этапы гликолиза.
- •Аэробное дыхание.
- •Анаэробное дыхание.
- •Удвоение и дивергенция генов в филогенезе.
- •Полиморфизм белков.
- •Обучающие задачи:
- •Тренирующие задачи:
- •Контролирующие задачи:
- •Образец тестового контроля
- •Эталон ответа
- •Глоссарий
Полиморфизм белков.
У разных особей возникают варианты (мутации) разных генов или варианты одного и того же гена. Варианты генов, образующиеся у отдельных особей, могут постепенно распространяться в популяции в результате наследования, если они не детальны. Так формируется генотипическая неоднородность популяции, которая ведет и к фенотипической неоднородности. На молекулярном уровне наиболее изучен как следствие генотипической гетерогенности полиморфизм белков — существование разных форм белка, выполняющего одинаковые или очень сходные функции (изобелки). Чаще всего изучают полиморфизм ферментов (т. е. наличие изоферментов), поскольку их гораздо легче обнаружить, чем другие белки, по катализируемой ими реакции.
Гемоглобин. Гемоглобины А(2а2β), F(2a2y), Аг(2а2δ) есть в эритроцитах почти всех людей. Гены этих белков не аллельны — они занимают разные локусы. Эти гены возникли в результате дупликации гена-предшественника и мутационной дивергенции копий. Но в крови некоторых людей обнаруживаются (обычно редко) другие гемоглобины, являющиеся продуктами аллельных генов. В частности, известно много аллельных вариантов гемоглобина А. Один из вариантов — это HbS, который отличается от НbА лишь одной аминокислотой в шестом положении β-цепи (β6 Glu-→>VaI).
По аллелям НbА и HbS все люди делятся на три группы с генотипами АА, AS и SS. У людей первой группы эритроциты содержат НЬА, у второй—НЬА и HbS, у третьей—HbS. Распространенность аллеля S (т. е. суммы людей с генотипами AS и SS) географически неравномерна: у некоторых народностей Азии и Африки—до 35%; у европейцев встречается редко.
Существует еще вариант гемоглобина: HbC (β6 Glu→Lys). По этой паре аллелей существуют генотипы АА, АС и СС. Теперь всех людей можно разделить на пять генотипически и фенотипически разных групп: АА, AS, SS, АС и СС. Известно около 300 разных вариантов НbА. Следовательно, по всем аллелям гемоглобина А люди образуют около 600 генотипически различающихся групп (если не считать очень редко встречающиеся гетерозиготы по вариантам, например SC).
Трансплантационная несовместимость. От полиморфизма белков в сочетании с иммунологическими реакциями зависит трансплантационная несовместимость. Клетки трансплантата содержат аллельные варианты белков, отличающиеся от вариантов реципиента. Эти белки донора являются антигенами для организма реципиента и приводят к развитию реакции клеточного иммунитета, в результате которой трансплантированная ткань отторгается. Роль антигенов могут выполнять также полисахариды или другие вещества, структура которых у донора и реципиента различна. Однако и в этом случае первичная причина различий—полиморфизм белков, поскольку все вещества в организме синтезируются при участии ферментов, т. е. белков. Решающую роль в отторжении трансплантата играют антигены (белки и полисахариды), расположенные на наружной поверхности плазматической мембраны клеток.
Отторжение трансплантата в наибольшей мере определяется главным комплексом тканевой совместимости — так называют участок генома, содержащий небольшое число структурных генов (не меньше трех), и белки, кодируемые этими генами. Белки главного комплекса тканевой совместимости представляют собой гликопротеины; они являются интегральными белками плазматической мембраны клеток. Гены главного комплекса тканевой совместимости отличаются необычайно высоким полиморфизмом: число комбинаций разных аллелей по генам этой системы достигает нескольких миллионов. Это самая полиморфная система человека из всех известных в настоящее время. Высокая степень полиморфизма генов обеспечивает столь же высокую степень индивидуальности по белкам, которые кодируются этими генами. Подбор донора и реципиента, сходных по антигенным свойствам белков главного комплекса совместимости, значительно повышает вероятность приживления трансплантата. Этот комплекс в настоящее время интенсивно изучается с целью преодолеть трансплантационную несовместимость — главное препятствие на пути трансплантологии.
Концепция иммунологического надзора. Разумеется, в ходе биологической эволюции такая реакция на чужеродные клетки выработалась не для отторжения трансплантата. По-видимому, действительная биологическая роль клеточного иммунитета, помимо защиты от вирусной и некоторых других инфекций, состоит в устранении измененных клеток, которые возникают в результате соматических мутаций. Общее число клеток в организме человека громадно—порядка 1018, поэтому и число мутантных клеток тоже велико: в каждый момент оно может измеряться биллионами клеток. Размножение мутантных клеток, неспособных выполнять нормальные функции, могло бы оказаться вредным для организма. На них и направлено действие клеточного иммунитета. Таким способом осуществляется иммунологический надзор за постоянством клеточного состава организма. Иммунологический надзор служит как бы второй линией обороны против появления мутантных клеток (первую линию обороны составляют системы репарации ДНК).
В каждой клетке организма происходит непрерывный распад ее структурно-функциональных компонентов, и за счет этого образуются аминокислоты, моносахариды, жирные кислоты, нуклеотиды и другие вещества. Они смешиваются с такими же веществами, образующимися из пищи, составляя общий фонд метаболитов организма. Этот фонд расходуется по двум направлениям: часть используется для возобновления распавшихся структурно-функциональных компонентов клетки; другая часть превращается в конечные продукты обмена веществ, которые выводятся из организма. При распаде веществ до конечных продуктов обмена освобождается энергия, у взрослого человека 8000—12 000 кДж (2000—3000 ккал) в сутки. Эта энергия используется клетками организма для совершения разного рода работы, а также для поддержания температуры тела на постоянном уровне.
Между содержанием разных веществ в организме и величиной их суточного потребления нет соответствия. Например, для белков отношение содержание/потребление равно примерно 180, а для углеводов оно менее 2, то есть различие по этому коэффициенту между белками и углеводами почти стократное. Это связано с тем, что подавляющая часть пищевых углеводов используется именно как источник энергии и распадается до конечных продуктов обмена, минуя стадию включения в структурно-функциональные компоненты клетки. То же в значительной мере относится и к жирам.
Основную массу элементов, из которых построены пищевые вещества, а также и тело человека, составляют углерод, водород, кислород и азот. Эти же элементы входят в состав главных конечных продуктов обмена веществ — С02, Н20 и мочевины H2N — СО — NH2. В форме Н20 выводится водород органических веществ, причем организм выделяет воды больше, чем потребляет (см. табл. 24): примерно 400 г воды образуется за сутки в организме из водорода органических веществ и кислорода вдыхаемого воздуха (метаболическая вода). В форме С02 выводятся углерод и кислород органических веществ, а в форме мочевины — азот.
Человек выделяет с мочой, калом, потом, выдыхаемым воздухом много и других веществ, но в незначительных количествах, так что их вклад в общий баланс обмена веществами между организмом и средой невелик. Однако надо отметить, что физиологическое значение выделения таких веществ может быть существенным. Например, нарушение выделения продуктов распада гема или продуктов метаболизма чужеродных соединений, в том числе лекарств, может быть причиной тяжелых нарушений обмена веществ и функций организма.