
zadany информатика / Turbo Pascal / Задан_ГШП_FOR
.docДОПОЛНИТЕЛЬНЫЕ ЗАДАНИЯ
Цикл с заголовком (суммы простейших числовых рядов )
-
1 –1/2 + 1/3 –1/4+…1/n=ln 2;
-
1 + 1/2 + 1/4 + 1/8 +…+1/2n = 2;
-
1 –1/2+ 1/4 - 1/8 + … 1/2n = 2/3;
-
1 – 1/3 + 1/5 – 1/7 + 1/9 - …1/(2n-1) =/4;
-
1/(1*2) + 1/(2*3) + 1/(3*4) + … + 1/(n(n+1)) =1;
-
1/(1*3) + 1/(3*5) + 1/(5*7) + … + 1/((2n-1)(n+1)) =1/2;
-
1/(1*3) + 1/(2*4) + 1/(3*5) + … + 1/((n-1)(n+1)) =3/4;
-
1/(3*5) + 1/(7*9) + 1/(11*13) + … + 1/((4n-1)(4n+1)) =1/2 - /8;
-
1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + … + 1/(n(n+1)(n+2)) =1/4;
-
1 +1/22 + 1/32 +1/42+…+1/n2=2/6;
-
1/12 + 1/32 +1/52+…+1/(2n+1)2=3/8;
-
1 +1/24 + 1/34 +1/44+…+1/n4=4/90;
-
1 - 1/24 + 1/34 - …1/n4=74/720;
-
1/14 + 1/34 +1/54+…+1/(2n+1) 4=4/96;
-
1 – 1/1! +1/2! – 1/3! + … 1/n! = 1/e;
-
1 + 1/1! +1/2! + 1/3! + …+ 1/n! = e;
-
1 + 2 + 3 + … + (n – 1) + n =n(n+1)/2;
-
p + (p+1) + (p+2) +… +(q-1) + q = (q + p)(q - p+1)/2;
-
1 + 3 + 5 + … + (2n – 3) + (2n – 1) = n2;
-
2 + 4 + 6 + … + (2n-2) + 2n = n(n+1);
-
12 + 22 + 32 + … + (n – 1) 2 + n2 =n(n+1)(2n+1)/6;
-
13 + 23 + 33 + … + (n – 1) 3 + n3 =n2 (n+1) 2 /4;
-
12 + 32 + 52 + … + (2n – 1) 2 =n(4n2-1)/3;
-
13 + 33 + 53 + … + (2n – 1) 3 =n2 (2n2 - 1) ;
-
14 + 24 + 34 + … + n4 =n(n+1)(2n+1)(3n2+3n – 1)/30;
Цикл с заголовком (суммы простейших числовых рядов )
-
1 –1/2 + 1/3 –1/4+…1/n=ln 2;
-
1 + 1/2 + 1/4 + 1/8 +…+1/2n = 2;
-
1 –1/2+ 1/4 - 1/8 + … 1/2n = 2/3;
-
1 – 1/3 + 1/5 – 1/7 + 1/9 - …+1/(2n-1) =/4;
-
1/(1*2) + 1/(2*3) + 1/(3*4) + … + 1/(n(n+1)) =1;
-
1/(1*3) + 1/(3*5) + 1/(5*7) + … + 1/((2n-1)(n+1)) =1/2;
-
1/(1*3) + 1/(2*4) + 1/(3*5) + … + 1/((n-1)(n+1)) =3/4;
-
1/(3*5) + 1/(7*9) + 1/(11*13) + … + 1/((4n-1)(4n+1)) =1/2 - /8;
-
1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + … + 1/(n(n+1)(n+2)) =1/4;
-
1 +1/22 + 1/32 +1/42+…+1/n2=2/6;
-
1/12 + 1/32 +1/52+…+1/(2n+1)2=3/8;
-
1 +1/24 + 1/34 +1/44+…+1/n4=4/90;
-
1 - 1/24 + 1/34 - …1/n4=74/720;
-
1/14 + 1/34 +1/54+…+1/(2n+1) 4=4/96;
-
1 – 1/1! +1/2! – 1/3! + … 1/n! = 1/e;
-
1 + 1/1! +1/2! + 1/3! + …+ 1/n! = e;
-
1 + 2 + 3 + … + (n – 1) + n =n(n+1)/2;
-
p + (p+1) + (p+2) +… +(q-1) + q = (q + p)(q - p+1)/2;
-
1 + 3 + 5 + … + (2n – 3) + (2n – 1) = n2;
-
2 + 4 + 6 + … + (2n-2) + 2n = n(n+1);
-
12 + 22 + 32 + … + (n – 1) 2 + n2 =n(n+1)(2n+1)/6;
-
13 + 23 + 33 + … + (n – 1) 3 + n3 =n2 (n+1) 2 /4;
-
12 + 32 + 52 + … + (2n – 1) 2 =n(4n2-1)/3;
-
13 + 33 + 53 + … + (2n – 1) 3 =n2 (2n2 - 1) ;
-
14 + 24 + 34 + … + n4 =n(n+1)(2n+1)(3n2+3n – 1)/30;