
- •Matlab r2013a стр. 225
- •Continue Long Statements on Multiple Lines
- •Creating and Concatenating Matrices
- •Overview
- •Constructing a Simple Matrix
- •Entering Signed Numbers
- •Specialized Matrix Functions
- •Examples
- •Concatenating Matrices
- •Keeping Matrices Rectangular
- •Matrix Concatenation Functions
- •Examples
- •Generating a Numeric Sequence
- •The Colon Operator
- •Using the Colon Operator with a Step Value
- •Matrix Indexing
- •Accessing Single Elements
- •Linear Indexing
- •Functions That Control Indexing Style
- •Accessing Multiple Elements
- •Nonconsecutive Elements
- •The end Keyword
- •Specifying All Elements of a Row or Column
- •Using Logicals in Array Indexing
- •Logical Indexing – Example 1
- •Logical Indexing – Example 2
- •Logical Indexing with a Smaller Array
- •Single-Colon Indexing with Different Array Types
- •Indexing on Assignment
- •Arithmetic Operators
- •Arithmetic Operators and Arrays
- •Operator Precedence
- •Precedence of and and or Operators
- •Overriding Default Precedence
- •Relational Operators and Arrays
- •Relational Operators and Empty Arrays
- •Overview of the Logical Class
- •Logical Operators
- •Element-Wise Operators and Functions
- •Short-Circuit Operators
- •Precedence of and and or Operators
- •Symbol Reference
- •Asterisk — *
- •Filename Wildcard
- •Function Handle Constructor
- •Class Folder Designator
- •Line Continuation
- •Dynamic Structure Fields
- •Exclamation Point — !
- •Semicolon — ;
- •Array Row Separator
- •Output Suppression
- •Command or Statement Separator
- •Single Quotes — ' '
- •Square Brackets — [ ]
- •Fundamental matlab Classes
- •More About
- •Overview of Numeric Classes
- •Integers
- •Integer Classes
- •Creating Integer Data
- •Arithmetic Operations on Integer Classes
- •Largest and Smallest Values for Integer Classes
- •Integer Functions
- •Floating-Point Numbers
- •Double-Precision Floating Point
- •Single-Precision Floating Point
- •Creating Floating-Point Data
- •Creating Double-Precision Data
- •Creating Single-Precision Data
- •Arithmetic Operations on Floating-Point Numbers
- •Double-Precision Operations
- •Single-Precision Operations
- •Largest and Smallest Values for Floating-Point Classes
- •Largest and Smallest Double-Precision Values
- •Largest and Smallest Single-Precision Values
- •Accuracy of Floating-Point Data
- •Double-Precision Accuracy
- •Single-Precision Accuracy
- •Avoiding Common Problems with Floating-Point Arithmetic
- •Example 1 — Round-Off or What You Get Is Not What You Expect
- •Example 2 — Catastrophic Cancellation
- •Example 3 — Floating-Point Operations and Linear Algebra
- •Floating-Point Functions
- •Creating a Rectangular Character Array
- •Combining Strings Vertically
- •Combining Strings Horizontally
- •Identifying Characters in a String
- •Working with Space Characters
- •Expanding Character Arrays
- •String Comparisons
- •Comparing Strings for Equality
- •Comparing for Equality Using Operators
- •Categorizing Characters Within a String
- •Create a Structure Array
- •Access Data in a Structure Array
- •Concatenate Structures
- •Generate Field Names from Variables
- •Access Data in Nested Structures
- •Access Elements of a Nonscalar Struct Array
- •Create a Cell Array
- •Access Data in a Cell Array
- •Add Cells to a Cell Array
- •Delete Data from a Cell Array
- •Combine Cell Arrays
- •Pass Contents of Cell Arrays to Functions
- •Multilevel Indexing to Access Parts of Cells
- •Related Examples
- •What Is a Function Handle?
- •Creating a Function Handle
- •Maximum Length of a Function Name
- •The Role of Scope, Precedence, and Overloading When Creating a Function Handle
- •Obtaining Permissions from Class Methods
- •Example
- •Using Function Handles for Anonymous Functions
- •Arrays of Function Handles
- •Calling a Function Using Its Handle
- •Calling Syntax
- •Calling a Function with Multiple Outputs
- •Returning a Handle for Use Outside of a Function File
- •Example — Using Function Handles in Optimization
- •Preserving Data from the Workspace
- •Preserving Data with Anonymous Functions
- •Preserving Data with Nested Functions
- •Loading a Saved Handle to a Nested Function
- •Applications of Function Handles
- •Example of Passing a Function Handle
- •Pass a Function to Another Function
- •Example 1 — Run integral on Varying Functions
- •Example 2 — Run integral on Anonymous Functions
- •Example 3 — Compare integral Results on Different Functions
- •Capture Data Values For Later Use By a Function
- •Example 1 — Constructing a Function Handle that Preserves Its Variables
- •Example 2 — Varying Data Values Stored in a Function Handle
- •Example 3 — You Cannot Vary Data in a Handle to an Anonymous Function
- •Call Functions Outside of Their Normal Scope
- •Save the Handle in a mat-File for Use in a Later matlab Session
- •Parameterizing Functions
- •Overview
- •Parameterizing Using Nested Functions
- •Parameterizing Using Anonymous Functions
- •See Also
- •More About
- •Saving and Loading Function Handles
- •Invalid or Obsolete Function Handles
- •Advanced Operations on Function Handles
- •Examining a Function Handle
- •Converting to and from a String
- •Converting a String to a Function Handle
- •Converting a Function Handle to a String
- •Comparing Function Handles
- •Comparing Handles Constructed from a Named Function
- •Comparing Handles to Anonymous Functions
- •Comparing Handles to Nested Functions
- •Comparing Handles Saved to a mat-File
- •Overview of the Map Data Structure
- •Description of the Map Class
- •Properties of the Map Class
- •Methods of the Map Class
- •Creating a Map Object
- •Constructing an Empty Map Object
- •Constructing An Initialized Map Object
- •Combining Map Objects
- •Examining the Contents of the Map
- •Reading and Writing Using a Key Index
- •Reading From the Map
- •Adding Key/Value Pairs
- •Building a Map with Concatenation
- •Modifying Keys and Values in Map
- •Removing Keys and Values from the Map
- •Modifying Values
- •Modifying Keys
- •Modifying a Copy of the Map
- •Mapping to Different Value Types
- •Mapping to a Structure Array
- •Mapping to a Cell Array
Example 2 — Varying Data Values Stored in a Function Handle
Values stored within a handle to a nested function do not have to remain constant. The following function constructs and returns a function handle h to the anonymous function addOne. In addition to associating the handle with addOne, MATLAB also stores the initial value of x in the function handle:
function h = counter
x = 0;
h = @addOne;
function y = addOne;
x = x + 1;
y = x;
end
end
The addOne function that is associated with handle h increments variable x each time you call it. This modifies the value of the variable stored in the function handle:
h = counter; % Создание function handle @addOne в counter. Ответ: h = @counter/addOne; путь counter/addOne и x=0 хранятся в h.
h() % Первый handle-вызов addOne для расчетов y при x=0 (хранится в h); другие операции в counter, кроме addOne, не выполняются.
ans =
1 (x=x+1=0+1=1; новое значение x сохранится в памяти addOne и в h)
h() % Второй вызов addOne для расчетов y уже при x=1;
ans =
2
Example 3 — You Cannot Vary Data in a Handle to an Anonymous Function
Unlike the example above, values stored within a handle to an anonymous function do remain constant. Construct a handle to an anonymous function that just returns the value of x, and initialize x to 300. The value of x within the function handle remains constant regardless of how you modify x external to the handle:
x = 300; % Сохранение x в главной памяти.
h = @()x; % Создание h при x=300. Код функции (y=x) и x=300 теперь будут сохраняться в h независимо от изменения значения x в общей
% памяти.
x = 50; % Изменение прежнего и сохранение нового значения x в главной памяти.
h() % Вызов h без входного параметра, ответ соответствует коду функции y=x при прежнем значении x:
ans =
300
clear x % Удаление x из главной памяти.
h() % Повторный вызов h без входного параметра, поэтому как и в предыдущем случае
ans =
300
ДОПОЛНЕНИЕ. Другой пример:
a=2;
h=@(x)a*x;
h(3)
ans =
6
clear a;
h(3)
ans =
6 (Конец ДОПОЛНЕНИЯ)
Call Functions Outside of Their Normal Scope
By design, only functions within a program file are permitted to access local functions defined within that file. However, if, in this same file, you were to construct a function handle for one of the internal local functions, and then pass that handle to a variable that exists outside of the file, access to that local function would be essentially unlimited. By capturing the access to the local function in a function handle, and then making that handle available to functions external to the file (or to the command line), the example extends that scope. An example of this is shown in the preceding section, Capture Data Values For Later Use By a Function (R2013a>MATLAB>Language Fundamentals>Data Types>Function Handles>Applications of Function Handles).
Private functions also have specific access rules that limit their availability with the MATLAB environment. But, as with local functions, MATLAB allows you to construct a handle for a private function. Therefore, you can call it by means of that handle from any location or even from the MATLAB command line, should it be necessary.
Save the Handle in a mat-File for Use in a Later matlab Session
If you have one or more function handles that you would like to reuse in a later MATLAB session, you can store them in a MAT-file using the save function and then use load later on to restore them to your MATLAB workspace.