
- •Contents
- •Preface
- •1 Spread spectrum signals and systems
- •1.1 Basic definition
- •1.2 Historical sketch
- •2 Classical reception problems and signal design
- •2.1 Gaussian channel, general reception problem and optimal decision rules
- •2.2 Binary data transmission (deterministic signals)
- •2.3 M-ary data transmission: deterministic signals
- •2.4 Complex envelope of a bandpass signal
- •2.5 M-ary data transmission: noncoherent signals
- •2.6 Trade-off between orthogonal-coding gain and bandwidth
- •2.7 Examples of orthogonal signal sets
- •2.7.1 Time-shift coding
- •2.7.2 Frequency-shift coding
- •2.7.3 Spread spectrum orthogonal coding
- •2.8 Signal parameter estimation
- •2.8.1 Problem statement and estimation rule
- •2.8.2 Estimation accuracy
- •2.9 Amplitude estimation
- •2.10 Phase estimation
- •2.11 Autocorrelation function and matched filter response
- •2.12 Estimation of the bandpass signal time delay
- •2.12.1 Estimation algorithm
- •2.12.2 Estimation accuracy
- •2.13 Estimation of carrier frequency
- •2.14 Simultaneous estimation of time delay and frequency
- •2.15 Signal resolution
- •2.16 Summary
- •Problems
- •Matlab-based problems
- •3 Merits of spread spectrum
- •3.1 Jamming immunity
- •3.1.1 Narrowband jammer
- •3.1.2 Barrage jammer
- •3.2 Low probability of detection
- •3.3 Signal structure secrecy
- •3.4 Electromagnetic compatibility
- •3.5 Propagation effects in wireless systems
- •3.5.1 Free-space propagation
- •3.5.2 Shadowing
- •3.5.3 Multipath fading
- •3.5.4 Performance analysis
- •3.6 Diversity
- •3.6.1 Combining modes
- •3.6.2 Arranging diversity branches
- •3.7 Multipath diversity and RAKE receiver
- •Problems
- •Matlab-based problems
- •4 Multiuser environment: code division multiple access
- •4.1 Multiuser systems and the multiple access problem
- •4.2 Frequency division multiple access
- •4.3 Time division multiple access
- •4.4 Synchronous code division multiple access
- •4.5 Asynchronous CDMA
- •4.6 Asynchronous CDMA in the cellular networks
- •4.6.1 The resource reuse problem and cellular systems
- •4.6.2 Number of users per cell in asynchronous CDMA
- •Problems
- •Matlab-based problems
- •5 Discrete spread spectrum signals
- •5.1 Spread spectrum modulation
- •5.2 General model and categorization of discrete signals
- •5.3 Correlation functions of APSK signals
- •5.4 Calculating correlation functions of code sequences
- •5.5 Correlation functions of FSK signals
- •5.6 Processing gain of discrete signals
- •Problems
- •Matlab-based problems
- •6 Spread spectrum signals for time measurement, synchronization and time-resolution
- •6.1 Demands on ACF: revisited
- •6.2 Signals with continuous frequency modulation
- •6.3 Criterion of good aperiodic ACF of APSK signals
- •6.4 Optimization of aperiodic PSK signals
- •6.5 Perfect periodic ACF: minimax binary sequences
- •6.6 Initial knowledge on finite fields and linear sequences
- •6.6.1 Definition of a finite field
- •6.6.2 Linear sequences over finite fields
- •6.6.3 m-sequences
- •6.7 Periodic ACF of m-sequences
- •6.8 More about finite fields
- •6.9 Legendre sequences
- •6.10 Binary codes with good aperiodic ACF: revisited
- •6.11 Sequences with perfect periodic ACF
- •6.11.1 Binary non-antipodal sequences
- •6.11.2 Polyphase codes
- •6.11.3 Ternary sequences
- •6.12 Suppression of sidelobes along the delay axis
- •6.12.1 Sidelobe suppression filter
- •6.12.2 SNR loss calculation
- •6.13 FSK signals with optimal aperiodic ACF
- •Problems
- •Matlab-based problems
- •7 Spread spectrum signature ensembles for CDMA applications
- •7.1 Data transmission via spread spectrum
- •7.1.1 Direct sequence spreading: BPSK data modulation and binary signatures
- •7.1.2 DS spreading: general case
- •7.1.3 Frequency hopping spreading
- •7.2 Designing signature ensembles for synchronous DS CDMA
- •7.2.1 Problem formulation
- •7.2.2 Optimizing signature sets in minimum distance
- •7.2.3 Welch-bound sequences
- •7.3 Approaches to designing signature ensembles for asynchronous DS CDMA
- •7.4 Time-offset signatures for asynchronous CDMA
- •7.5 Examples of minimax signature ensembles
- •7.5.1 Frequency-offset binary m-sequences
- •7.5.2 Gold sets
- •7.5.3 Kasami sets and their extensions
- •7.5.4 Kamaletdinov ensembles
- •Problems
- •Matlab-based problems
- •8 DS spread spectrum signal acquisition and tracking
- •8.1 Acquisition and tracking procedures
- •8.2 Serial search
- •8.2.1 Algorithm model
- •8.2.2 Probability of correct acquisition and average number of steps
- •8.2.3 Minimizing average acquisition time
- •8.3 Acquisition acceleration techniques
- •8.3.1 Problem statement
- •8.3.2 Sequential cell examining
- •8.3.3 Serial-parallel search
- •8.3.4 Rapid acquisition sequences
- •8.4 Code tracking
- •8.4.1 Delay estimation by tracking
- •8.4.2 Early–late DLL discriminators
- •8.4.3 DLL noise performance
- •Problems
- •Matlab-based problems
- •9 Channel coding in spread spectrum systems
- •9.1 Preliminary notes and terminology
- •9.2 Error-detecting block codes
- •9.2.1 Binary block codes and detection capability
- •9.2.2 Linear codes and their polynomial representation
- •9.2.3 Syndrome calculation and error detection
- •9.2.4 Choice of generator polynomials for CRC
- •9.3 Convolutional codes
- •9.3.1 Convolutional encoder
- •9.3.2 Trellis diagram, free distance and asymptotic coding gain
- •9.3.3 The Viterbi decoding algorithm
- •9.3.4 Applications
- •9.4 Turbo codes
- •9.4.1 Turbo encoders
- •9.4.2 Iterative decoding
- •9.4.3 Performance
- •9.4.4 Applications
- •9.5 Channel interleaving
- •Problems
- •Matlab-based problems
- •10 Some advancements in spread spectrum systems development
- •10.1 Multiuser reception and suppressing MAI
- •10.1.1 Optimal (ML) multiuser rule for synchronous CDMA
- •10.1.2 Decorrelating algorithm
- •10.1.3 Minimum mean-square error detection
- •10.1.4 Blind MMSE detector
- •10.1.5 Interference cancellation
- •10.1.6 Asynchronous multiuser detectors
- •10.2 Multicarrier modulation and OFDM
- •10.2.1 Multicarrier DS CDMA
- •10.2.2 Conventional MC transmission and OFDM
- •10.2.3 Multicarrier CDMA
- •10.2.4 Applications
- •10.3 Transmit diversity and space–time coding in CDMA systems
- •10.3.1 Transmit diversity and the space–time coding problem
- •10.3.2 Efficiency of transmit diversity
- •10.3.3 Time-switched space–time code
- •10.3.4 Alamouti space–time code
- •10.3.5 Transmit diversity in spread spectrum applications
- •Problems
- •Matlab-based problems
- •11 Examples of operational wireless spread spectrum systems
- •11.1 Preliminary remarks
- •11.2 Global positioning system
- •11.2.1 General system principles and architecture
- •11.2.2 GPS ranging signals
- •11.2.3 Signal processing
- •11.2.4 Accuracy
- •11.2.5 GLONASS and GNSS
- •11.2.6 Applications
- •11.3 Air interfaces cdmaOne (IS-95) and cdma2000
- •11.3.1 Introductory remarks
- •11.3.2 Spreading codes of IS-95
- •11.3.3 Forward link channels of IS-95
- •11.3.3.1 Pilot channel
- •11.3.3.2 Synchronization channel
- •11.3.3.3 Paging channels
- •11.3.3.4 Traffic channels
- •11.3.3.5 Forward link modulation
- •11.3.3.6 MS processing of forward link signal
- •11.3.4 Reverse link of IS-95
- •11.3.4.1 Reverse link traffic channel
- •11.3.4.2 Access channel
- •11.3.4.3 Reverse link modulation
- •11.3.5 Evolution of air interface cdmaOne to cdma2000
- •11.4 Air interface UMTS
- •11.4.1 Preliminaries
- •11.4.2 Types of UMTS channels
- •11.4.3 Dedicated physical uplink channels
- •11.4.4 Common physical uplink channels
- •11.4.5 Uplink channelization codes
- •11.4.6 Uplink scrambling
- •11.4.7 Mapping downlink transport channels to physical channels
- •11.4.8 Downlink physical channels format
- •11.4.9 Downlink channelization codes
- •11.4.10 Downlink scrambling codes
- •11.4.11 Synchronization channel
- •11.4.11.1 General structure
- •11.4.11.2 Primary synchronization code
- •11.4.11.3 Secondary synchronization code
- •References
- •Index

References
[1]Carlson, A. B. Communication Systems, McGraw-Hill, New York, 1986.
[2]Sklar, B. Digital Communications, Prentice-Hall, Upper Saddle River, NJ, 2001.
[3]Dixon, R. C. Spread Spectrum Systems with Commercial Applications, John Wiley & Sons, Chichester, 1994.
[4]Haykin, S. Communication Systems, John Wiley & Sons, Chichester, 2001.
[5]Ziemer, R. E. and Peterson, R. L. Introduction to Digital Communication, Prentice-Hall, Upper Saddle River, NJ, 2001.
[6]Ziemer, R. E., Peterson, R. L. and Borth, D. E. Introduction to Spread Spectrum Communications, Prentice-Hall, Englewood Cliffs, NJ, 1995.
[7]Proakis, J. G. Digital Communications, McGraw-Hill, New York, 2001.
[8]Proakis, J. and Salehi, M. Communication Systems Engineering, Prentice-Hall, Upper Saddle River, NJ, 2002.
[9]Simon M. K., Omura, J. K., Scholtz, R. A. and Levitt, B. K. Spread Spectrum Communication Handbook, McGraw-Hill, New York, 1994.
[10]Scholtz, R. A. The origins of spread spectrum communications, IEEE Trans. Commun., 30, 822–854, 1982.
[11]Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices and Groups, Springer-Verlag, New York, 1998.
[12]Sloane, N. J. A. Spherical codes, nice arrangements of points on a sphere in various dimensions, http:// www.research.att.com/ njas/packings/index.html.
[13]Adams, R. A. Calculus: A Complete Course, 4th edn, Addison-Wesley Longman, Don mills, Ontario, 1999.
[14]Leon-Garcia, A. Probability and Random Processes for Electrical Engineering, Addison-Wesley, Reading, MA, 1994.
[15]Freeman, R. L. Radio System Design for Telecommunications, John Wiley & Sons, Chichester, 1997.
[16]Berg, O., Berg, T., Haavik, S., Hjelmstad, J. and Skaug, R. Spread Spectrum in Mobile Communication, IEE, London, 1998.
[17]Lee, W. C. Y. Mobile Communications Engineering, McGraw-Hill, New York, 1997.
[18]Lee, J. S. and Miller, L. E. CDMA Systems Engineering Handbook, Artech House, Boston, MA, 1998.
[19]Glisic, S. Adaptive WCDMA: Theory and Practice, John Wiley & Sons, Chichester, 2003.
[20]Kim, K. I. CDMA cellular engineering issues, IEEE Trans. Veh. Tech., 42, 345–350, 1993.
[21]Gradstein, I. and Ryzhik, I. Table of Integrals, Series, and Products, Academic Press, New York, 1980.
[22]Eliahou, S. and Kervaire, M. Barker sequences and difference sets, L’Enseignement Mathe´matique, 38, 345–382, 1992.
[23]Friese, M. Polyphase Barker sequences up to length 36, IEEE Trans. Inform. Theory, 42, 1248–1250, 1996.
[24]Brenner, A. F. Polyphase Barker sequences up to length 45 with small alphabets, Electron. Lett., 34, 1576–1577, 1998.
Spread Spectrum and CDMA: Principles and Applications Valery P. Ipatov
2005 John Wiley & Sons, Ltd
370 |
References |
|
|
[25]Lindner, J. Binary sequences up to lengths 40 with best possible autocorrelation function, Electron. Lett., 11, 507, 1975.
[26]Cohen, M. N., Fox, M. R. and Baden, J. M. Minimum peak sidelobe pulse compression codes, in
Proceedings of the IEEE International Radar Conference, 7–10 May 1990, Arlington, VA, pp. 633–639, IEEE, 1990.
[27]Deng, X. and Fan, P. New binary sequences with good aperiodic autocorrelation obtained by evolutionary algorithm, IEEE Commun. Lett., 3, 288–290, 1999.
[28]Baumert, L. D. Cyclic Difference Sets, Springer-Verlag, Berlin, 1971.
[29]Schmidt, B. Cyclotomic integers and finite geometry, J. Am. Math. Soc., 12, 929–952, 1999.
[30]Gilbert, W. J. and Nicholson, W. K. Modern Algebra with Applications, John Wiley & Sons, Chichester, 2004.
[31]Bossert, M. Channel Coding for Telecommunications, John Wiley & Sons, Chichester, 1999.
[32]Lidl, R. and Niederreiter, H. Introduction to Finite Fields and their Applications, Cambridge University Press, Cambridge, 1994.
[33]Blahut, R. E. Algebraic Codes for Data Transmission, Cambridge University Press, Cambridge, 2003.
[34]Sverdlick, M. B. Optimal Discrete Signals, Sov. Radio, Moscow, 1975 (in Russian).
[35]Lu¨ke, H. D., Schotten, H. D. and Hadinejad-Mahram, H. Binary and quadriphase sequences with optimal autocorrelation properties: a survey, IEEE Trans. Inform. Theory, 49, 3271–3282, 2003.
[36]Lu¨ke, H. D. Korrelationsignale, Springer-Verlag, Berlin, 1992 (in German).
[37]Fan, P. and Darnell, M. Sequence Design for Communication Applications, John Wiley & Sons, Chichester, 1996.
[38]Amiantov, I. N. Selected Issues of Statistical Communications Theory, Sov. Radio, Moscow, 1971 (in Russian).
[39]Levanon, N. and Mozeson, E. Radar Signals, John Wiley & Sons, Chichester, 2004.
[40]Ipatov, V. P. Ternary sequences with ideal periodic autocorrelation properties, Radio Eng. Elect. Physics, 24(10), 75–79, 1979.
[41]Ipatov, V. P. Contributory to the theory of ternary sequences with perfect periodic autocorrelation properties, Radio Eng. Elect. Physics, 25(4), 31–34, 1980.
[42]Zierler, N. Linear recurring sequences, J. Soc. Appl. Math., 7, 31–48, 1959.
[43]Hoholdt, T. and Justesen, J. Ternary sequences with perfect periodic autocorrelation, IEEE Trans. Inform. Theory, 29, 597–600, 1983.
[44]Ackroyd, M. H. and Ghani, F. Optimal mismatched filter for sidelobe suppression, IEEE Trans. Aerosp. Electron. Syst., 9, 214–218, 1973.
[45]Rihaczek, A. W. and Golden, R. M. Range sidelobe suppression for Barker codes, IEEE Trans. Aerosp. Electron. Syst., 7, 1087–1092, 1971.
[46]Ipatov, V. P. Total suppression of sidelobes of periodic correlation functions of phase manipulated signals, Radio Eng. Elect. Physics, 22(8), 42–47, 1977.
[47]Ipatov, V. P. Choice of periodical PSK signal and filter combination, Radioelectron. a. Commun. Syst. (Radioelektronika), 21(4), 49–55, 1978.
[48]Ipatov, V. P. Synthesis of a binary periodic signal-filter pair, Radioelectron. a. Commun. Syst. (Radioelektronika), 23(4), 46–51, 1980.
[49]Ipatov, V. P. Binary periodic sequences with low sidelobe suppression loss, Radioelectron. a. Commun. Syst. (Radioelektronika), 23(1), 15–19, 1980.
[50]Ipatov, V. P. and Fedorov, B. V. Regular binary sequences with small losses in suppressing sidelobes,
Radioelectron. a. Commun. Syst. (Radioelektronika), 27(3), 29–33, 1984.
[51]Blokhuis, A. and Tiersma, H. J. Bounds for the size of radar arrays, IEEE Trans. Inform. Theory, 34, 164–167, 1988.
[52]Hamkins, J. and Zeger, K. Improved bounds on maximum size binary radar array, IEEE Trans. Inform. Theory, 43, 997–1000, 1997.
[53]Golomb, S. W. and Taylor, H. Two-dimensional synchronization patterns for minimum ambiguity, IEEE Trans. Inform. Theory, 28, 600–604, 1982.
[54]Golomb, S. W. and Taylor, H. Construction and properties of Costas arrays, Proc. IEEE, 72, 1143–1163, 1984.
[55]Chatschik, B. An overview of Bluetooth wireless technology, IEEE Commun. Magazine, 39, 86–94, 2001.
[56]Ross, J. A. F. and Taylor, D. P. Vector assignment scheme for N þ M users in N-dimensional global additive channel, Electron. Lett., 28, 1634–1636, 1992.
References |
371 |
|
|
[57]Paavola, J. and Ipatov, V. P. Binary CDMA signatures for N þ M users in N-dimensional global signal space, Electron. Lett., 39, 738–740, 2003.
[58]Djonin, D. and Bhargava V. New results on low complexity detectors for oversaturated CDMA systems, in Proceedings of GLOBECOM, 25–29 November 2001, San Antonio, TX, vol. 2, pp. 846–850, IEEE, 2001.
[59]Paavola, J. and Ipatov, V. P. Oversaturating synchronous CDMA systems on the signature per user basis, in Proceedings of the 5th European Personal Mobile Communications Conference, 22–25 April 2003, Glasgow, UK, pp. 427–430, IEEE, 2003.
[60]Learned, R. E., Willsky, A. S. and Boroson, D. M. Low complexity optimal joint detection for oversaturated multiple access communications, IEEE Trans. Signal Processing, 45, 113–123, 1997.
[61]Shi, Z. and Schlegel, C. Spreading code construction for CDMA, IEEE Commun. Lett., 7, 4–6, 2003.
[62]Welch, L. R. Lower bound on the maximum cross-correlation of signals, IEEE Trans. Inform. Theory, 20, 397–399, 1974.
[63]Rupf, M. and Massey, J. L. Optimum sequence multisets for synchronous code-division multiple-access channels, IEEE Trans. Inform. Theory, 40, 1261–1266, 1994.
[64]Karystinos, G. N. and Pados, D. A. New bounds on the total squared correlation and optimum design of DS-CDMA binary signature sets, IEEE Trans. Commun., 51, 48–51, 2003.
[65]Ipatov, V. P. On the Karystinos–Pados bounds and optimal binary DS-CDMA signature ensembles,
IEEE Commun. Lett., 8, 81–83, 2004.
[66]Stark, H. and Woods, J. W. Probability and Random Processes with Applications to Signal Processing, Prentice-Hall, Upper Saddle River, NJ, 2002.
[67]Sarwate, D. V. and Pursley, M. B. Crosscorrelation properties of pseudorandom and related sequences, Proc. IEEE, 68, 593–619, 1980.
[68]Sidelnikov, V. M. On the mutual correlation of sequences, Soviet Math. Dokl., 12, 197–201, 1971.
[69]Korowajczuk L., Xavier, B. S. A., Filho, A. M. F., Ribeiro, L. Z., Korowajczuk, C. and DaSilva, L. A. Designing cdma2000 Systems, John Wiley & Sons, Chichester, 2004.
[70]Ipatov, V. P. Periodic Discrete Signals with Optimal Correlation Properties, Radio I Sviaz, Moscow, 1992 (in Russian).
[71]Goldberg, B.-G. Code division multiplexing by frequency shifted biphase modulated M-sequences, IEEE Trans. Aerosp. Electron. Syst., 17, 303–304, 1981.
[72]Gold, R. Optimal binary sequences for spread spectrum multiplexing, IEEE Trans. Inform. Theory, 13, 619–621, 1967.
[73]Kasami, T. Weight distribution formula for some class of cyclic codes, Technical Report R-285, Coordinated Science Laboratory, University of Illinois, Urbana, April 1966.
[74]Kamaletdinov, B. Zh. An optimal ensemble of binary sequences based on the union of the ensembles of Kasami and bent-function sequences, Problems of Inform. Transmission, 24, 167–169, 1988.
[75]Olzen, J. D., Scholtz, R. A. and Welch, L. R. Bent-function sequences, IEEE Trans. Inform. Theory, 28, 858–864, 1982.
[76]Kamaletdinov, B. Zh. Optimal sets of binary sequences, Problems of Inform. Transmission, 32, 171–175, 1996.
[77]Glisic, S. and Vucetic, B. Spread Spectrum CDMA Systems for Wireless Communications, Artech House, Boston, MA, 1997.
[78]Ipatov V. P., Kazarinov, Yu. M. (ed.), Kolomensky, Yu. A. and Uljanitsky, Yu. D. Acquisition, Detection and Parameter Measuring of Signals in Radionavigation Systems, Sov. Radio, Moscow, 1975 (in Russian).
[79]Holmes, J. K. and Chen, C. C. Acquisition time performance of PN spread spectrum systems, IEEE Trans. Commun., 25, 778–784, 1977.
[80]Polydoros, A. and Weber, C. L. A unified approach to serial search spread-spectrum code acquisition— Part I: General theory, IEEE Trans. Commun., 32, 542–549, 1984.
[81]Polydoros, A. and Weber, C. L. A unified approach to serial search spread-spectrum code acquisition— Part II: A matched filter receiver, IEEE Trans. Commun., 32, 550–560, 1984.
[82]Di Carlo, D. M. and Weber, C. L. Multiple dwell serial search: performance and application in direct sequence code acquisition, IEEE Trans. Commun., 31, 650–659, 1983.
[83]Viterbi, A. J. CDMA: Principles of Spread Spectrum Communication, Addison-Wesley, Reading, MA, 1995.
[84]Zigangirov, K. Sh. Theory of Code Division Multiple Access Communication, John Wiley & Sons, Chichester, 2004.
372 |
References |
|
|
[85]Wald, A. Sequential Analysis, John Wiley & Sons, New York, 1947.
[86]Stiffler, J. J. Theory of Synchronous Communications, Prentice-Hall, Englewood Cliffs, NJ, 1971.
[87]Golomb, S. W. (ed.) Digital Communications with Space Applications, Prentice-Hall, Englewood Cliffs, NJ, 1964.
[88]Van Trees, H. L. Detection, Estimation and Modulation Theory, Part II, Nonlinear Modulation Theory, John Wiley & Sons, Chichester, 2002.
[89]Lindsey, W. C. Synchronization Systems in Communication and Control, Prentice-Hall, Englewood Cliffs, NJ, 1972.
[90]Viterbi, A. J. Principles of Coherent Communications, McGraw-Hill, New York, 1966.
[91]Clark G. C. and Cain, J. B. Error-Correcting Coding for Digital Communications, Plenum Press, New York, 1988.
[92]Castro, J. P. The UMTS Network and Radio Access Technology. An Interface Techniques for Future Mobile Systems, John Wiley & Sons, Chichester, 2001.
[93]Viterbi, A. J. and Omura, J. K. Principles of Digital Communications and Coding, McGraw-Hill, New York, 1979.
[94]Heller, J. A. and Jacobs, I. W. Viterbi decoding for satellite and space communications, IEEE Trans. Commun. Technol., 19, 835–848, 1971.
[95]Berrou, C., Glavieux, A. and Thitimajshima, P. Near Shannon limit error-correcting coding and decoding: turbo codes, in Proceedings of the IEEE International Conference on Communications, ICC ’93, 23–26 May 1993 Geneva, Switzerland, vol. 2, pp. 1064–1070, IEEE, 1993.
[96]Berrou, C. and Glavieux, A. Near optimum error correcting coding and decoding: turbo codes, IEEE Trans. Commun., 44, 1261–1271, 1996.
[97]Schlegel, C. B. and Pe´rez, L. C. Trellis and Turbo Coding, John Wiley & Sons, Chichester, 2004.
[98]Bahl, L. R., Cocke, J., Jelinek, F. and Raviv, J. Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Inform. Theory, 20, 284–287, 1974.
[99]Madhow, U. and Honig, M. L. MMSE interference suppression for direct-sequence spread spectrum CDMA, IEEE Trans. Commun., 42, 3178–3188, 1994.
[100]Wang, X. and Poor, V. H. Wireless Communication Systems. Advanced Techniques for Signal Reception, Prentice-Hall, Upper Saddle River, NJ, 2004.
[101]Honig, M. and Tatsanis, M. K. Adaptive techniques for multiuser CDMA receivers, IEEE Signal Process. Magazine, 17, 49–61, 2000.
[102]Verdu´, S. Multiuser Detection, Cambridge University Press, Cambridge, 1998.
[103]Lu, W. W. (ed.) Broadband Wireless Mobile. 3G and Beyond, John Wiley & Sons, Chichester, 2002.
[104]Tanner, R. and Woodward, J. WCDMA—Requirements and Practical Design, John Wiley & Sons, Chichester, 2004.
[105]Fazel, K. and Kaiser, S. Multi-Carrier and Spread Spectrum Systems, John Wiley & Sons, Chichester, 2003.
[106]Hara, S. and Prasad, R. Overview of multicarrier CDMA, IEEE Commun. Magazine, 35, 126–133, 1997.
[107]Popovic´, B. M. Spreading sequences for multicarrier CDMA systems, IEEE Trans. Commun., 47, 918–926, 1999.
[108]Telatar, E. Capacity of multi-antenna Gaussian channels, Eur. Trans. Telecommun., 10, 585–595, 1999.
[109]Foschini, G. J. and Gans, M. J. On limits of wireless communications in a fading environment when using multiple antennas, Wireless Personal Commun., 6, 311–335, 1998.
[110]Vucetic, B. and Yuan, J. Space–Time Coding, John Wiley & Sons, Chichester, 2003.
[111]Alamouti, S. M. A simple transmit diversity technique for wireless communications, IEEE J. Select. Areas. Commun., 16, 1451–1458, 1998.
[112]Tarokh, V., Jafarkhani, H. and Calderbank, A. R. Space–time block codes from orthogonal designs,
IEEE Trans. Inform. Theory, 45, 1456–1467, 1999.
[113]Tarokh, V., Naguib, A., Seshardi, N. and Calderbank, A. R. Space–time codes for high data rate wireless communication: performance criteria in the presence of channel estimation errors, mobility, and multiple paths, IEEE Trans. Commun., 47, 199–207, 1996.
[114]Holma, A. and Toskala, A. (eds) WCDMA for UMTS. Radio Access for Third Generation Mobile Communications, John Wiley & Sons, Chichester, 2001.
[115]Korhonen, J. Introduction to 3G Mobile Communications, Artech House, Boston, MA, 2001.
[116]Hockwald, B., Marzetta, T. L. and Papadias, C. B. A transmitter diversity scheme for wideband CDMA systems based on space-time spreading, IEEE J. Select. Areas. Commun., 19, 48–60, 2001.
References |
373 |
|
|
[117]Hoffman-Wellenhoff, B., Lichtenegger, H. and Collins, J. Global Positioning System: Theory and Practice, Springer-Verlag, New York, 2001.
[118]El-Rabbani, A. Introduction to GPS: The Global Positioning System, Artech House, Boston, MA, 2002.
[119]Farrel, J. and Barth, M. The Global Positioning System and Inertial Navigation, McGraw-Hill, New York, 1999.
[120]Steele, R., Lee, Ch. and Gould, P. GSM, cdmaOne and 3G Systems, John Wiley & Sons, Chichester, 2001.
[121]Karim, M. R. and Sarraf, R. W-CDMA and cdma2000 for 3G Mobile Networks, McGraw-Hill, New York, 2002.
[122]Walke, B., Seidenberg, P. and Althoff, M. P. UMTS: The Fundamentals, John Wiley & Sons, Chichester, 2003.