
- •Contents
- •Preface
- •1 Spread spectrum signals and systems
- •1.1 Basic definition
- •1.2 Historical sketch
- •2 Classical reception problems and signal design
- •2.1 Gaussian channel, general reception problem and optimal decision rules
- •2.2 Binary data transmission (deterministic signals)
- •2.3 M-ary data transmission: deterministic signals
- •2.4 Complex envelope of a bandpass signal
- •2.5 M-ary data transmission: noncoherent signals
- •2.6 Trade-off between orthogonal-coding gain and bandwidth
- •2.7 Examples of orthogonal signal sets
- •2.7.1 Time-shift coding
- •2.7.2 Frequency-shift coding
- •2.7.3 Spread spectrum orthogonal coding
- •2.8 Signal parameter estimation
- •2.8.1 Problem statement and estimation rule
- •2.8.2 Estimation accuracy
- •2.9 Amplitude estimation
- •2.10 Phase estimation
- •2.11 Autocorrelation function and matched filter response
- •2.12 Estimation of the bandpass signal time delay
- •2.12.1 Estimation algorithm
- •2.12.2 Estimation accuracy
- •2.13 Estimation of carrier frequency
- •2.14 Simultaneous estimation of time delay and frequency
- •2.15 Signal resolution
- •2.16 Summary
- •Problems
- •Matlab-based problems
- •3 Merits of spread spectrum
- •3.1 Jamming immunity
- •3.1.1 Narrowband jammer
- •3.1.2 Barrage jammer
- •3.2 Low probability of detection
- •3.3 Signal structure secrecy
- •3.4 Electromagnetic compatibility
- •3.5 Propagation effects in wireless systems
- •3.5.1 Free-space propagation
- •3.5.2 Shadowing
- •3.5.3 Multipath fading
- •3.5.4 Performance analysis
- •3.6 Diversity
- •3.6.1 Combining modes
- •3.6.2 Arranging diversity branches
- •3.7 Multipath diversity and RAKE receiver
- •Problems
- •Matlab-based problems
- •4 Multiuser environment: code division multiple access
- •4.1 Multiuser systems and the multiple access problem
- •4.2 Frequency division multiple access
- •4.3 Time division multiple access
- •4.4 Synchronous code division multiple access
- •4.5 Asynchronous CDMA
- •4.6 Asynchronous CDMA in the cellular networks
- •4.6.1 The resource reuse problem and cellular systems
- •4.6.2 Number of users per cell in asynchronous CDMA
- •Problems
- •Matlab-based problems
- •5 Discrete spread spectrum signals
- •5.1 Spread spectrum modulation
- •5.2 General model and categorization of discrete signals
- •5.3 Correlation functions of APSK signals
- •5.4 Calculating correlation functions of code sequences
- •5.5 Correlation functions of FSK signals
- •5.6 Processing gain of discrete signals
- •Problems
- •Matlab-based problems
- •6 Spread spectrum signals for time measurement, synchronization and time-resolution
- •6.1 Demands on ACF: revisited
- •6.2 Signals with continuous frequency modulation
- •6.3 Criterion of good aperiodic ACF of APSK signals
- •6.4 Optimization of aperiodic PSK signals
- •6.5 Perfect periodic ACF: minimax binary sequences
- •6.6 Initial knowledge on finite fields and linear sequences
- •6.6.1 Definition of a finite field
- •6.6.2 Linear sequences over finite fields
- •6.6.3 m-sequences
- •6.7 Periodic ACF of m-sequences
- •6.8 More about finite fields
- •6.9 Legendre sequences
- •6.10 Binary codes with good aperiodic ACF: revisited
- •6.11 Sequences with perfect periodic ACF
- •6.11.1 Binary non-antipodal sequences
- •6.11.2 Polyphase codes
- •6.11.3 Ternary sequences
- •6.12 Suppression of sidelobes along the delay axis
- •6.12.1 Sidelobe suppression filter
- •6.12.2 SNR loss calculation
- •6.13 FSK signals with optimal aperiodic ACF
- •Problems
- •Matlab-based problems
- •7 Spread spectrum signature ensembles for CDMA applications
- •7.1 Data transmission via spread spectrum
- •7.1.1 Direct sequence spreading: BPSK data modulation and binary signatures
- •7.1.2 DS spreading: general case
- •7.1.3 Frequency hopping spreading
- •7.2 Designing signature ensembles for synchronous DS CDMA
- •7.2.1 Problem formulation
- •7.2.2 Optimizing signature sets in minimum distance
- •7.2.3 Welch-bound sequences
- •7.3 Approaches to designing signature ensembles for asynchronous DS CDMA
- •7.4 Time-offset signatures for asynchronous CDMA
- •7.5 Examples of minimax signature ensembles
- •7.5.1 Frequency-offset binary m-sequences
- •7.5.2 Gold sets
- •7.5.3 Kasami sets and their extensions
- •7.5.4 Kamaletdinov ensembles
- •Problems
- •Matlab-based problems
- •8 DS spread spectrum signal acquisition and tracking
- •8.1 Acquisition and tracking procedures
- •8.2 Serial search
- •8.2.1 Algorithm model
- •8.2.2 Probability of correct acquisition and average number of steps
- •8.2.3 Minimizing average acquisition time
- •8.3 Acquisition acceleration techniques
- •8.3.1 Problem statement
- •8.3.2 Sequential cell examining
- •8.3.3 Serial-parallel search
- •8.3.4 Rapid acquisition sequences
- •8.4 Code tracking
- •8.4.1 Delay estimation by tracking
- •8.4.2 Early–late DLL discriminators
- •8.4.3 DLL noise performance
- •Problems
- •Matlab-based problems
- •9 Channel coding in spread spectrum systems
- •9.1 Preliminary notes and terminology
- •9.2 Error-detecting block codes
- •9.2.1 Binary block codes and detection capability
- •9.2.2 Linear codes and their polynomial representation
- •9.2.3 Syndrome calculation and error detection
- •9.2.4 Choice of generator polynomials for CRC
- •9.3 Convolutional codes
- •9.3.1 Convolutional encoder
- •9.3.2 Trellis diagram, free distance and asymptotic coding gain
- •9.3.3 The Viterbi decoding algorithm
- •9.3.4 Applications
- •9.4 Turbo codes
- •9.4.1 Turbo encoders
- •9.4.2 Iterative decoding
- •9.4.3 Performance
- •9.4.4 Applications
- •9.5 Channel interleaving
- •Problems
- •Matlab-based problems
- •10 Some advancements in spread spectrum systems development
- •10.1 Multiuser reception and suppressing MAI
- •10.1.1 Optimal (ML) multiuser rule for synchronous CDMA
- •10.1.2 Decorrelating algorithm
- •10.1.3 Minimum mean-square error detection
- •10.1.4 Blind MMSE detector
- •10.1.5 Interference cancellation
- •10.1.6 Asynchronous multiuser detectors
- •10.2 Multicarrier modulation and OFDM
- •10.2.1 Multicarrier DS CDMA
- •10.2.2 Conventional MC transmission and OFDM
- •10.2.3 Multicarrier CDMA
- •10.2.4 Applications
- •10.3 Transmit diversity and space–time coding in CDMA systems
- •10.3.1 Transmit diversity and the space–time coding problem
- •10.3.2 Efficiency of transmit diversity
- •10.3.3 Time-switched space–time code
- •10.3.4 Alamouti space–time code
- •10.3.5 Transmit diversity in spread spectrum applications
- •Problems
- •Matlab-based problems
- •11 Examples of operational wireless spread spectrum systems
- •11.1 Preliminary remarks
- •11.2 Global positioning system
- •11.2.1 General system principles and architecture
- •11.2.2 GPS ranging signals
- •11.2.3 Signal processing
- •11.2.4 Accuracy
- •11.2.5 GLONASS and GNSS
- •11.2.6 Applications
- •11.3 Air interfaces cdmaOne (IS-95) and cdma2000
- •11.3.1 Introductory remarks
- •11.3.2 Spreading codes of IS-95
- •11.3.3 Forward link channels of IS-95
- •11.3.3.1 Pilot channel
- •11.3.3.2 Synchronization channel
- •11.3.3.3 Paging channels
- •11.3.3.4 Traffic channels
- •11.3.3.5 Forward link modulation
- •11.3.3.6 MS processing of forward link signal
- •11.3.4 Reverse link of IS-95
- •11.3.4.1 Reverse link traffic channel
- •11.3.4.2 Access channel
- •11.3.4.3 Reverse link modulation
- •11.3.5 Evolution of air interface cdmaOne to cdma2000
- •11.4 Air interface UMTS
- •11.4.1 Preliminaries
- •11.4.2 Types of UMTS channels
- •11.4.3 Dedicated physical uplink channels
- •11.4.4 Common physical uplink channels
- •11.4.5 Uplink channelization codes
- •11.4.6 Uplink scrambling
- •11.4.7 Mapping downlink transport channels to physical channels
- •11.4.8 Downlink physical channels format
- •11.4.9 Downlink channelization codes
- •11.4.10 Downlink scrambling codes
- •11.4.11 Synchronization channel
- •11.4.11.1 General structure
- •11.4.11.2 Primary synchronization code
- •11.4.11.3 Secondary synchronization code
- •References
- •Index
Operational wireless spread spectrum systems |
361 |
|
|
no reliable knowledge about signal attenuation in the uplink, and the first transmission of preamble goes at low power. As long as no message comes from the BS confirming connection, the MS randomly selects new access slots and makes new attempts, each time increasing the signal power. After receiving BS confirmation, the MS transmits the message itself covering one or two frames (10 or 20 ms). There is no closed power control loop in PRACH, since the connection sessions on it are quite short.
The structures of the physical CPCH (PCPCH) and PRACH are in general similar; however, the message segment of the PCPCH may occupy a larger number of frames and the preamble segment is followed by one more part: the collision detection preamble, which helps to recognize simultaneous attempts of several MSs to use PCPCH. Due to the longer duration of PCPCH packets the presence of a closed power control loop in it appears to be reasonable in contrast to PRACH.
In the same way as in the dedicated channels, quadrature multiplexing is used in the common channels to combine information and service components of transmitted data. Separation of common and dedicated physical channels is performed by channelization codes, which are considered in the next subsection.
11.4.5 Uplink channelization codes
As stated above, an individual MS uses several types of channels to be separated in the BS receiver. Since the same clock controls all the physical channels of the MS, synchronous code division is a good option to arrange separation between physical channels (multiple DPDCH, DPCCH, PRACH, PCPCH). Note that we are now discussing only the separation of channels of an isolated MS, signals of different mobiles remaining separated by asynchronous CDMA, as in cdmaOne and cdma2000.
In the UMTS documents the channelization coding format is described by the binary tree establishing an iteration procedure. At every iteration any word of the preceding iteration generates two new words of double length by appending either itself or its negation. Let ck be some code vector obtained at the kth iteration. Then two code vectors of double dimension ckþ1 ¼ (ck, ck) and c0kþ1 ¼ (ck, ck) are its descendants at the next iteration. In this way, starting with a trivial word (1) of length one leads after k iterations to 2k channelization codewords of length N ¼ 2k (Figure 11.8 shows this for the case k ¼ 3). One can easily see that this algorithm differs from the Sylvester rule of constructing the Hadamard matrix (see Section 2.7.3) only in reordering the resulting matrix rows, so that the codewords obtained are nothing but Walsh functions. Nevertheless they appear in the UMTS specifications under a special name, orthogonal variable spreading factor (OVSF) codes.
The uplink OVSF tree is built using k ¼ 8 iterations, so that codewords have maximal length N ¼ 256 chips. The word of this length consisting of all ones is allocated to the dedicated control channel DPCCH, whereby a subsequent scrambling secures DPCCH spreading factor 256, mentioned in Section 11.4.3. Choice of channelization code of the same length for DPDCH (spreading factor 256) allows transmitting data at the rate 15 kbps. If a greater rate is on demand, the data symbol becomes shorter, i.e. the spreading factor drops (the chip rate never changes, remaining 3.84 Mcps!). Appropriate DPDCH channelization words are then taken from the intermediate (kth, SF ¼ 2k being

362 |
Spread Spectrum and CDMA |
|
|
(1, 1, 1, 1, 1, 1, 1, 1)
(1, 1, 1, 1)
(1, 1, 1, 1, –1, –1, –1, –1)
(1, 1)
(1, 1, –1, –1, 1, 1, –1, –1)
(1, 1, –1, –1)
(1, 1, –1, –1, –1, –1, 1, 1)
(1)
(1, –1, 1, –1, 1, –1, 1, –1)
(1, –1, 1, –1)
(1, –1, 1, –1, –1, 1, –1, 1)
(1, –1)
(1, –1, –1, 1, 1, –1, –1, 1)
(1, –1, –1, 1)
(1, –1, –1, 1, –1, 1, 1, –1)
Figure 11.8 Tree of OVSF codes of length 8
the required spreading factor) iteration of the OVSF code tree. If a necessary rate is attainable within a single DPDCH its channelization word number is fixed by the specification as SF/4 ¼ 2k 2, counting top-down on the tree and numbering the uppermost word by zero. Such a choice always preserves orthogonality between DPDCH and DPCCH independently of DPDCH spreading factor. When a single DPDCH (with spreading factor 4) cannot provide the necessary data rate, the multicode transmission mode involves several DPDCH, all having always the same minimum spreading factor 4. There are three codewords of length 4 orthogonal to each other and to the word of DPCCH, so, allowing for the chance of using the same word for two DPDCH in quadrature multiplexing (Figure 11.7), up to 6 multicode DPDCH may be arranged.
The technique of allocation of codewords to PRACH and PCPCH set up by the specification also provides their orthogonality to the dedicated channels over the whole range of DPDCH data rates.
11.4.6 Uplink scrambling
The final step in forming the MS signal is its DS spreading by a user-specific signature to realize asynchronous CDMA separation of signals of different MSs in the BS receiver. According to the UMTS thesaurus, this operation, as well as a similar operation in the downlink, is called scrambling. This usage of the term is slightly different to that in the cdmaOne and cdma2000 documents (see Sections 11.3.3.3 and 11.3.3.4). There are two types of uplink scrambling codes predetermined by the standard: either long or short codes apply to scramble dedicated channels.
The |
Gold sequences (see Section 7.5.2) of |
length |
L ¼ 225 1 |
truncated |
to |
one |
||||||||||
frame |
period, i.e. |
38 400 chips, |
serve to build |
up the long scrambling codes. |
The |
|||||||||||
3 |
2 |
with feedback |
|
1 |
(x) |
¼ |
x25 |
þ |
x3 |
þ |
1 |
2 |
(x) |
¼ |
x25 |
þ |
LFSR |
generators |
polynomials f |
|
|
|
and f |
|
|
x þ x þ x þ 1 form two m-sequences, of which the second may also be obtained by decimation of the first with the index relevant for Gold codes. The modulo 2 addition of
Operational wireless spread spectrum systems |
363 |
|
|
the offset second m-sequence to the first gives a Gold sequence which is then truncated and mapped to the f 1g alphabet. The ‘pure’ truncated Gold sequence fcig determines the real component of the MS QPSK signature. To obtain the imaginary part the original (before truncation) Gold sequence is first offset by 16 777 232 chips and then truncated and mapped to produce the f 1g sequence fc0ig. After this, the negative of every even element of the latter sequence replaces the following odd element and the result is chip-wise multiplied with fcig. The last operation halves the number of elements in the resulting QPSK sequence whose polarities are opposite to the preceding. Indeed, the equation describing a QPSK signature ai thus obtained is:
a |
i ¼ |
c i |
j |
ð |
1 |
Þ |
ic |
i c0 |
ð |
2 |
b |
i=2 |
cÞ |
; |
ð |
11:1 |
Þ |
|
ð Þ þ |
|
|
|
ð Þ |
|
|
|
|
where c(i) and c0(i) are just more convenient designations for the elements ci and c0i. One can observe now that in passing from an even position i ¼ 2l to the next odd i ¼ 2l þ 1 the real and imaginary part cannot change simultaneously, meaning that maximal phase jumps are only 90 , never 180 , so a chip polarity may change into the opposite only during transitions from odd to even chips. Reduced frequency of the opposite transitions is typically desirable for battery lifetime, since power amplifier during them dissipates higher energy.
The final step of QPSK scrambling consists in multiplication of the MS multiplexed signal taken from the branches of the scheme of Figure 11.7 with scrambling sequence. This operation, which is performed by an ordinary QPSK modulator, was discussed at length in Section 7.1.2.
A scrambling sequence is precisely synchronized to the MS clock beginning in any frame from the same symbol (chip).
Note that the key advantage of Gold codes—minimax periodic correlation proper- ties—cannot justify their choice for uplink scrambling, because truncation corrupts correlations drastically. An alternative reasoning is ease of generation of many (no fewer than 225 þ 1) pseudorandom sequences.
Short scrambling sequences have length 256 and are planned for employment when a BS receiver is capable of running multiuser algorithms (see Section 10.1). In the case of asynchronous CDMA, the complexity of this type of receiver typically grows with the length of spreading code. The rule of forming short scrambling codes set by the specification includes generating a linear recurrent quaternary sequence of length 255, modulo 4 summation of it with two binary recurrent sequences of lengths 51 and 85, extension of the resulting sequence by one element up to length 256, mapping quaternary symbols onto the QPSK alphabet, and transformation of the obtained complex sequence by rule (11.1).
11.4.7 Mapping downlink transport channels to physical channels
Information conveyed by the network to a specific MS at the transport layer is organized as a single dedicated channel, which is then mapped to two downlink physical channels similar to those in the uplink: data (DPDCH) and control (DPCCH) dedicated channels.
The list of downlink common transport channels is much wider compared to the uplink. It contains, specifically, the already mentioned broadcast channel BCH transmitting

364 |
Spread Spectrum and CDMA |
|
|
parameters of the network or cell used by all MS, the forward access channel (FACH) utilized by the BS to send command data to the MS with known location, and the paging channel (PCH), over which the BS sends commands to the MS with unknown location, etc. At the physical layer the primary common control physical channel (P-CCPCH) transmits BCH data, FACH is mapped to the secondary common control physical channel (S-CCPCH), and transmission of PCH is performed again partly by S-CCPCH and partly by the synchronization channel (SCH). There is also a common pilot channel (CPICH) transmitting data-unmodulated signal to be used by the receiver for estimating the channel parameters. A complete scheme of correspondence between the downlink transport and physical channels set up by the specification may be found in [92,121].
11.4.8 Downlink physical channels format
The mechanism of multiplexing the downlink dedicated data and control channels DPDCH and DPCCH is different from that of the uplink: every slot is split into parts and every part is allocated either to DPDCH or to DPCCH. Under this arrangement the BS transmitter operates at times in a discontinuous manner, due to the pauses in the datastream during periods of low voice activity. The discontinuous emission being used in the MS transmitter might cause interference, badly affecting nearby electronic devices (e.g. hearing aid). This phenomenon has been repeatedly reported for GSM handsets. However, as for the BS, its discontinuous radiation cannot be that harmful, since the devices mentioned above are hardly likely to be close enough to the BS antenna.
Another distinction of the downlink physical channel format is QPSK (unlike BPSK in uplink) data modulation. First, the demultiplexer (DMUX) splits the bit stream after the first physical sublayer (channel encoding, interleaving etc.) into two streams, bearing even and odd original bits, respectively. Both streams mapped to the f1g alphabet are multiplied by a binary channelization code (CC), giving real and imaginary parts of a complex channelized data signal, as Figure 11.9 shows. The final step is multiplication of this QPSK data signal with the QPSK spreading (scrambling) code and QPSK carrier modulation, performed the same way as in the uplink.
Even bits |
× |
Re |
|
|
Data
DMUX
× Im
Odd bits
CC
Figure 11.9 Data demultiplexing and channelization in UMTS uplink