
- •Contents
- •Preface
- •1 Spread spectrum signals and systems
- •1.1 Basic definition
- •1.2 Historical sketch
- •2 Classical reception problems and signal design
- •2.1 Gaussian channel, general reception problem and optimal decision rules
- •2.2 Binary data transmission (deterministic signals)
- •2.3 M-ary data transmission: deterministic signals
- •2.4 Complex envelope of a bandpass signal
- •2.5 M-ary data transmission: noncoherent signals
- •2.6 Trade-off between orthogonal-coding gain and bandwidth
- •2.7 Examples of orthogonal signal sets
- •2.7.1 Time-shift coding
- •2.7.2 Frequency-shift coding
- •2.7.3 Spread spectrum orthogonal coding
- •2.8 Signal parameter estimation
- •2.8.1 Problem statement and estimation rule
- •2.8.2 Estimation accuracy
- •2.9 Amplitude estimation
- •2.10 Phase estimation
- •2.11 Autocorrelation function and matched filter response
- •2.12 Estimation of the bandpass signal time delay
- •2.12.1 Estimation algorithm
- •2.12.2 Estimation accuracy
- •2.13 Estimation of carrier frequency
- •2.14 Simultaneous estimation of time delay and frequency
- •2.15 Signal resolution
- •2.16 Summary
- •Problems
- •Matlab-based problems
- •3 Merits of spread spectrum
- •3.1 Jamming immunity
- •3.1.1 Narrowband jammer
- •3.1.2 Barrage jammer
- •3.2 Low probability of detection
- •3.3 Signal structure secrecy
- •3.4 Electromagnetic compatibility
- •3.5 Propagation effects in wireless systems
- •3.5.1 Free-space propagation
- •3.5.2 Shadowing
- •3.5.3 Multipath fading
- •3.5.4 Performance analysis
- •3.6 Diversity
- •3.6.1 Combining modes
- •3.6.2 Arranging diversity branches
- •3.7 Multipath diversity and RAKE receiver
- •Problems
- •Matlab-based problems
- •4 Multiuser environment: code division multiple access
- •4.1 Multiuser systems and the multiple access problem
- •4.2 Frequency division multiple access
- •4.3 Time division multiple access
- •4.4 Synchronous code division multiple access
- •4.5 Asynchronous CDMA
- •4.6 Asynchronous CDMA in the cellular networks
- •4.6.1 The resource reuse problem and cellular systems
- •4.6.2 Number of users per cell in asynchronous CDMA
- •Problems
- •Matlab-based problems
- •5 Discrete spread spectrum signals
- •5.1 Spread spectrum modulation
- •5.2 General model and categorization of discrete signals
- •5.3 Correlation functions of APSK signals
- •5.4 Calculating correlation functions of code sequences
- •5.5 Correlation functions of FSK signals
- •5.6 Processing gain of discrete signals
- •Problems
- •Matlab-based problems
- •6 Spread spectrum signals for time measurement, synchronization and time-resolution
- •6.1 Demands on ACF: revisited
- •6.2 Signals with continuous frequency modulation
- •6.3 Criterion of good aperiodic ACF of APSK signals
- •6.4 Optimization of aperiodic PSK signals
- •6.5 Perfect periodic ACF: minimax binary sequences
- •6.6 Initial knowledge on finite fields and linear sequences
- •6.6.1 Definition of a finite field
- •6.6.2 Linear sequences over finite fields
- •6.6.3 m-sequences
- •6.7 Periodic ACF of m-sequences
- •6.8 More about finite fields
- •6.9 Legendre sequences
- •6.10 Binary codes with good aperiodic ACF: revisited
- •6.11 Sequences with perfect periodic ACF
- •6.11.1 Binary non-antipodal sequences
- •6.11.2 Polyphase codes
- •6.11.3 Ternary sequences
- •6.12 Suppression of sidelobes along the delay axis
- •6.12.1 Sidelobe suppression filter
- •6.12.2 SNR loss calculation
- •6.13 FSK signals with optimal aperiodic ACF
- •Problems
- •Matlab-based problems
- •7 Spread spectrum signature ensembles for CDMA applications
- •7.1 Data transmission via spread spectrum
- •7.1.1 Direct sequence spreading: BPSK data modulation and binary signatures
- •7.1.2 DS spreading: general case
- •7.1.3 Frequency hopping spreading
- •7.2 Designing signature ensembles for synchronous DS CDMA
- •7.2.1 Problem formulation
- •7.2.2 Optimizing signature sets in minimum distance
- •7.2.3 Welch-bound sequences
- •7.3 Approaches to designing signature ensembles for asynchronous DS CDMA
- •7.4 Time-offset signatures for asynchronous CDMA
- •7.5 Examples of minimax signature ensembles
- •7.5.1 Frequency-offset binary m-sequences
- •7.5.2 Gold sets
- •7.5.3 Kasami sets and their extensions
- •7.5.4 Kamaletdinov ensembles
- •Problems
- •Matlab-based problems
- •8 DS spread spectrum signal acquisition and tracking
- •8.1 Acquisition and tracking procedures
- •8.2 Serial search
- •8.2.1 Algorithm model
- •8.2.2 Probability of correct acquisition and average number of steps
- •8.2.3 Minimizing average acquisition time
- •8.3 Acquisition acceleration techniques
- •8.3.1 Problem statement
- •8.3.2 Sequential cell examining
- •8.3.3 Serial-parallel search
- •8.3.4 Rapid acquisition sequences
- •8.4 Code tracking
- •8.4.1 Delay estimation by tracking
- •8.4.2 Early–late DLL discriminators
- •8.4.3 DLL noise performance
- •Problems
- •Matlab-based problems
- •9 Channel coding in spread spectrum systems
- •9.1 Preliminary notes and terminology
- •9.2 Error-detecting block codes
- •9.2.1 Binary block codes and detection capability
- •9.2.2 Linear codes and their polynomial representation
- •9.2.3 Syndrome calculation and error detection
- •9.2.4 Choice of generator polynomials for CRC
- •9.3 Convolutional codes
- •9.3.1 Convolutional encoder
- •9.3.2 Trellis diagram, free distance and asymptotic coding gain
- •9.3.3 The Viterbi decoding algorithm
- •9.3.4 Applications
- •9.4 Turbo codes
- •9.4.1 Turbo encoders
- •9.4.2 Iterative decoding
- •9.4.3 Performance
- •9.4.4 Applications
- •9.5 Channel interleaving
- •Problems
- •Matlab-based problems
- •10 Some advancements in spread spectrum systems development
- •10.1 Multiuser reception and suppressing MAI
- •10.1.1 Optimal (ML) multiuser rule for synchronous CDMA
- •10.1.2 Decorrelating algorithm
- •10.1.3 Minimum mean-square error detection
- •10.1.4 Blind MMSE detector
- •10.1.5 Interference cancellation
- •10.1.6 Asynchronous multiuser detectors
- •10.2 Multicarrier modulation and OFDM
- •10.2.1 Multicarrier DS CDMA
- •10.2.2 Conventional MC transmission and OFDM
- •10.2.3 Multicarrier CDMA
- •10.2.4 Applications
- •10.3 Transmit diversity and space–time coding in CDMA systems
- •10.3.1 Transmit diversity and the space–time coding problem
- •10.3.2 Efficiency of transmit diversity
- •10.3.3 Time-switched space–time code
- •10.3.4 Alamouti space–time code
- •10.3.5 Transmit diversity in spread spectrum applications
- •Problems
- •Matlab-based problems
- •11 Examples of operational wireless spread spectrum systems
- •11.1 Preliminary remarks
- •11.2 Global positioning system
- •11.2.1 General system principles and architecture
- •11.2.2 GPS ranging signals
- •11.2.3 Signal processing
- •11.2.4 Accuracy
- •11.2.5 GLONASS and GNSS
- •11.2.6 Applications
- •11.3 Air interfaces cdmaOne (IS-95) and cdma2000
- •11.3.1 Introductory remarks
- •11.3.2 Spreading codes of IS-95
- •11.3.3 Forward link channels of IS-95
- •11.3.3.1 Pilot channel
- •11.3.3.2 Synchronization channel
- •11.3.3.3 Paging channels
- •11.3.3.4 Traffic channels
- •11.3.3.5 Forward link modulation
- •11.3.3.6 MS processing of forward link signal
- •11.3.4 Reverse link of IS-95
- •11.3.4.1 Reverse link traffic channel
- •11.3.4.2 Access channel
- •11.3.4.3 Reverse link modulation
- •11.3.5 Evolution of air interface cdmaOne to cdma2000
- •11.4 Air interface UMTS
- •11.4.1 Preliminaries
- •11.4.2 Types of UMTS channels
- •11.4.3 Dedicated physical uplink channels
- •11.4.4 Common physical uplink channels
- •11.4.5 Uplink channelization codes
- •11.4.6 Uplink scrambling
- •11.4.7 Mapping downlink transport channels to physical channels
- •11.4.8 Downlink physical channels format
- •11.4.9 Downlink channelization codes
- •11.4.10 Downlink scrambling codes
- •11.4.11 Synchronization channel
- •11.4.11.1 General structure
- •11.4.11.2 Primary synchronization code
- •11.4.11.3 Secondary synchronization code
- •References
- •Index
192 |
Spread Spectrum and CDMA |
|
|
A multitude of even more effective binary codes were found, based on converting linear recurrent sequences over finite fields to the binary f 1g alphabet, as well as on Singer codes. All of them possess a similar appealing feature: a simple SLSF structure whose coefficients take on no more than three different values. Without going into the details, which are sophisticated enough, and referring the curious reader to [49, 50], note that among those sequences families are present having asymptotically vanishing SLSF loss: dB ! 0 dB with N ! 1.
6.13 FSK signals with optimal aperiodic ACF
To discuss briefly the issue of designing FSK signals with good correlation properties let us come back to (5.20), recalling that having a low level of Rp(m) is equivalent to minimizing the number of coincident frequencies in a frequency code F0, F1, . . . , FN 1 and its replica shifted by m positions. Certainly, when the number of chips N (i.e. length) does not exceed the number of frequencies M, it is trivially easy to obtain zero level of sidelobes a(m) ¼ 0, m 6¼0 by using a frequency code whose elements Fi are all different. Practically, however, the case N > M is much more interesting, entailing repetitions among elements Fi, i ¼ 0, 1, . . . , N 1 and, thus, at least one coincidence in the shifted replicas of the frequency code, i.e. a, max 1/N.
Since a frequency sequence may be described as an M N array (Section 5.5), minimizing a, max means inventing an array with minimal possible number of coincident labels (dots) in the array itself and its replica, which is shifted horizontally by m positions. One of the topical problems is constructing the so-called radar arrays defined as M N arrays having only one labelled entry in every column and a, max ¼ 1/N, i.e. the number of abovementioned coincidences within one. The desire to find a radar array as long as possible is understandable, given M, because it would mean minimizing a, max under limitations imposed on the frequency resource. Following [51] let us proof a simplest upper bound on the length of a radar array.
Consider a sequence F0, F1, . . . , FN 1 and note that to have no more than one coincidence all differences between numbers of positions carrying the same frequencies should be different. Indeed, let Fi ¼ Fk, Fs ¼ Ft and i k ¼ s t > 0. Then in the original sequence and its copy shifted by m ¼ i k ¼ s t positions at least two coin-
cidences will happen. Denote |
ni number of symbols (frequencies) among |
F0, F1, . . . , FN 1 occurring i times. |
Then: |
XX
ini ¼ N and |
ni ¼ M |
ð6:47Þ |
i |
i |
|
Now count the number of possible differences between numbers of positions carrying identical frequencies. There are i repetitions of some frequency and hence i(i 1) such
differences for this very frequency. Since there are ni frequencies repeated i times, the
P
total number of differences in question is i i(i 1)ni, and because among the differences no repetition is allowed:
X
iði 1Þni N 1 |
ð6:48Þ |
i

Time measurement, synchronization and time-resolution |
193 |
|
|
where the right-hand side gives the maximal number of unequal positive differences among the numbers f0, 1, . . . , N 1g. The trinomial i(i 1) þ 3 2i ¼ i2 3i þ 3 has no real roots, and, hence, is positive at any i. Therefore the sum:
X X X X
½iði 1Þ þ 3 2i&ni ¼ iði 1Þni þ 3 ni 2 ini 0
i i i i
which, being combined with (6.47), (6.48), gives N 1 þ 3M 2N 0 or:
N 3M 1 |
ð6:49Þ |
In fact this bound is not the tightest one. More accurate bounds are known, e.g. in [52] the asymptotic result is derived:
p
N 20 þ 6 M; M 1; ð6:50Þ 8
lowering the right-hand side of (6.49) by approximately 0.194M.
Absolutely tight, i.e. really achievable, upper bounds on the length N are now known up to M ¼ 16. The table given in [52] allows the maximal length Nmax of a radar array in this range of M to be expressed as
|
|
8 3M |
3; |
5 |
M |
9 |
|
|
|
||
|
|
> |
3M |
|
2; |
2 |
M |
4 |
|
|
|
Nmax |
¼ |
|
|
|
|
|
|
ð |
6:51 |
Þ |
|
|
> |
3M 4; |
10 M 13 |
|
|||||||
|
|
> |
|
|
|
|
|
|
|
|
|
|
|
< |
|
|
|
|
|
|
|
|
|
|
|
> |
3M 5; |
14 M 16 |
|
|
|
||||
|
|
> |
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
Example 6.13.1. The frequency code 1, 2, 3, 4, 5, 6, 7, 8, 7, 4, 3, 9, 9, 5, 8, 2, 6, 5, 1, 4, 2, 1, 3, 7, where the numbers of frequencies in an alphabet containing M ¼ 9 frequencies or, equivalently, the numbers of dotted rows in every column of the array are given, has maximal possible length N ¼ 24. Its radar array property, i.e. possessing only one frequency coincidence at all non-zero shifts, is verified by a direct test (Problem 6.54).
In addition, a regular rule for constructing radar arrays of length N ¼ 2:5M exists (see details in [51]) whenever M is even and M/2 is a product of primes having remainder one of division by 4, i.e. M ¼ 10, 26, 34, 58, . . . .
A sonar array is a further generalization of a radar array, preserving the ‘no more than one coincidence’ property for arbitrary non-zero combinations of horizontal and vertical shifts [53]. Physically, this requirement reflects the desire to have a small correlation of signal replicas detuned in both time and frequency. Considering an approach to the choice of frequency space for FSK signals (Section 5.5), frequency shifts turning a current frequency into the adjacent one are more typical of sonar