
- •Министерство образования Республики Беларусь
- •1.2. Строение атомного ядра
- •1.3. Стабильные и радиоактивные изотопы
- •1.4. Понятие о радиоактивности
- •1.5. Типы ядерных превращений
- •1.6. Ядерные и термоядерные реакции
- •14054Xe → 14055Sr →14056Ba→14057La→14058Ce (стабильный)
- •9437Rb→9438Sr→9439y→9440Zn (стабильный)
- •1.7. Период полураспада радионуклидов. Закон радиоактивного распада
- •Лекция № 2 основные свойства ионизирующих излучений
- •2.1. Понятие об ионизирующих излучениях
- •2.2. Характеристика отдельных видов излучений
- •2.3. Взаимодействие радиоактивных излучений с веществом
- •Лекция № 3 основные дозовые величины
- •3.1. Понятие о дозиметрии
- •3.2. Активность радионуклида. Единицы активности
- •3.3. Экспозиционная доза
- •3.4. Поглощённая доза
- •3.5. Эквивалентная доза
- •3.6. Эффективная эквивалентная доза
- •3.7. Другие дозовые величины
- •3.8. Переходные коэффициенты
- •Методы и организация дозиметрического контроля
- •4.1. Общие сведения
- •4.2. Ионизационный метод
- •4.3. Сцинтилляционный метод
- •4.4. Люминесцентный метод
- •4.5. Химический метод
- •4.6. Фотографический метод
- •4.7. Дозиметрические приборы
- •4.8. Дозиметрический контроль
- •Основные источники облучения человека
- •5.1. Понятие о радиационном фоне
- •5.2. Космическое излучение
- •5.3. Внешние источники радиации земного происхождения
- •5.4. Искусственная радиоактивность
- •5.5. Характеристика основных естественных и искусственных радионуклидов
- •Радиоизотопы и биосфера
- •6.1. Поведение радионуклидов в почве
- •6.2. Нуклиды и растительный мир
- •6.3. Аэральное загрязнение растений
- •6.4. Поступление радионуклидов в организм гидробионтов
- •6.5. Действие излучений на растения
- •6.6. Действие излучений на животных
- •Биологическое действие ионизирующих излучений
- •7.1. Пищевые цепочки
- •7.2. Пути поступления радионуклидов в организм человека
- •7.3. Распределение радионуклидов в организме
- •7.4. Выведение радионуклидов из организма
- •7.5. Основные этапы действия ионизирующих излучений
- •7.6. Радиационные повреждения на различных уровнях биологической организации:
- •Клинические проявления действия радиации
- •8.1. Факторы, влияющие на степень тяжести лучевых поражений
- •8.2. Внешнее и внутреннее облучение
- •8.3. Лучевые поражения организма
- •8.4. Отдалённые последствия облучения человека
- •8.5. Генетические поареждения
- •Острая и хроническая лучевая болезнь
- •9.1. Острая лучевая болезнь
- •9.2.Клиническая характеристика периодов костномозговой формы олб
- •9.3. Хроническая лучевая болезнь
- •9.4. Действие малых доз радиации
- •10.Нормы и правила радиационной безопасности
- •10.1. Международная деятельность в области радиационной защиты
- •10.2. Регламентация радиационного воздействия
- •10.3. Нормы радиационной безопасности (нрб-2000)
- •10.4. Санитарные правила работы с радиоактивными веществами
- •11. Гигиенические аспекты радиационной безопасности
- •11.1. Мероприятия радиационной безопасности
- •11.2. Пути снижения внешнего облучения
- •11.3. Пути снижения внутреннего облучения
- •11.4. Мероприятия по ускорению выведения радионуклидов из организма
- •11.5. Пути снижения содержания радионуклидов в продукции растениеводства и животноводства
- •Обеспечение безопасной жизнедеятельности на территориях. Загрязненных радионуклидами
- •12.1. Общие понятия о безопасности жизнедеятельности
- •12.2. Виды деятельности на территории с радиоактивным загрязнением Виды деятельности в зоне эвакуации (отчуждения)
- •Виды деятельности в зоне первоочередного отселени
- •Виды деятельности зоне последующего отселения
- •Виды деятельности в зоне с правом на отселение
- •Виды деятельности в зоне проживания с периодическим радиационным контролем
- •Меры по защите здоровья населения, осуществляемые на территориях радиоактивного загрязнения.
- •12.3. Концепция проживания населения (радиационной защиты) а) Основные защитные мероприятия.
- •Б) Контрмеры, направленные на получение чистой продукции.
- •В средний и поздний периоды после выпадения радионуклидов.
- •В лесном хозяйстве
- •В) Выведение радионуклидов из пищевых продуктов при технологической и кулинарной обработке
- •Литература
3.3. Экспозиционная доза
Общее количество падающей на объект энергии излучения за время облучения может быть получено измерением так называемой экспозиционной дозы. Как уже отмечалось, гамма- или рентгеновское излучение образует в среде определенное количество ионов. Так как поглощенная энергия расходуется на ионизацию среды, то для измерения ее необходимо подсчитать число пар ионов, образующихся под действием излучения. Однако измерить число пар ионов непосредственно в глубине тканей живого организма сложно. В связи с этим для количественной характеристики рентгеновского и гамма-излучения, действующего на объект, определяют сначала экспозиционную дозу в воздухе, а затем расчетным путем определяют поглощенную дозу для тканей и органов организма. Экспозиционную дозу определяют по ионизирующему действию излучения в определенной массе воздуха и только при значениях энергии рентгеновского и гамма-излучения в диапазоне от десятков килоэлектронвольт до трех мегаэлектронвольт.
Экспозиционная доза рассчитывается только для рентгеновского и гамма-излучения, ибо только кванты этих излучений достаточно долгопробежные и могут создавать равномерное наружное облучение. Альфа- и бета-излучения короткопробежные, большая их часть поглощается одеждой и кожей, и не представляют большой опасности для внутренних органов.
Экспозиционная доза– это количественная характеристика рентгеновского и гамма-излучения, основанная на их ионизирующем действии и выраженная суммарным электрическим зарядом ионов одного знака, образованных в элементарном объеме воздуха в условиях электронного равновесия. За единицу экспозиционной дозы в Международной системе единиц (СИ) принят один кулон электрического заряда в одном килограмме облучаемого воздуха.
Кл/кг - это такая экспозиционная доза рентгеновских и гамма-лучей, под действием которой в 1 кг сухого воздуха образуется число пар ионов, суммарный заряд каждого знака которых равен одному кулону. Это число составляет 6,24х1018 пар ионов.
На практике до сих пор применяют внесистемную единицу экспозиционной дозы – рентген. Рентген (Р) – единица экспозиционной дозы, при которой в 1 см3 воздуха ( 0,001293 г ) при нормальных условиях (00 С и 1013 ГПА) образуется 2,082 х 109 пар ионов. Обычно используют производные рентгена – дробные доли: миллирентген – мР (тысячная доля рентгена), микрорентген – мкР (миллионная доля рентгена); мкР = 10-6 Р, мР = 10-3 Р.
При определении действия радиации на какую либо среду (особенно при облучении живого организма) необходимо учитывать не только общую дозу, но и время, за которое она получена. Поэтому вводится понятие мощность дозы. Мощность экспозиционной дозы (уровень радиации) – это доза, отнесенная к единице времени: Р/час, мР/час, мкР/час. В Международной системе единиц мощность экспозиционной дозы выражается в Кл/кг х с или А/кг (ампер на кг). Взаимосвязь между единицами экспозиционной дозы следующая: 1 Кл/кг = 3876Р; 1 Р = 2,58 х 10 -4 Кл/кг.
Поскольку на образование одной пары ионов в воздухе в среднем затрачивается 34 эВ, то энергетический эквивалент рентгена в 1 см3 воздуха составляет:
2,08 х 109 х 34 = 7,08 х 104 МэВ = 0,114 эрг/см3 или в 1г воздуха – 88 эрг.(0,114 : 0,001293 = 88).
Чтобы рассчитать поглощенную дозу в тканях организма сначала определяют поглощенную дозу в воздухе, а затем, используя переходный коэффициент, переходят к поглощенной дозе в тканях.
Так, например, зная, что на образование 1 пары в воздухе затрачивается 34эВ энергии (1эВ = 1,6 х 10-19Дж), можно рассчитать, что при экспозиционной дозе в воздухе в 1Кл/кг на ионизацию 1кг воздуха (образование 6,24 х 1018 пар ионов) затрачивается 34Дж.
6,24 х 1018 х 34/1,6 х 10-19 = 33,94Дж/кг, т.е. при экспозиционной дозе в 1Кл/кг поглощенная доза в воздухе составит 34 Дж/кг.
От поглощенной дозы в воздухе к поглощенной дозе в биологической ткани переходят с использованием множителя 1,09, т.е. при облучении организма экспозиционной дозой в 1 Кл/кг ткани организма поглощают 37 Дж/кг энергии ионизирующих излучений (34 Дж/кг х 1,09 = 37 Дж/кг),