
- •Современного
- •Естествознания
- •Курс лекций
- •Логика познания и методология естественных наук
- •1.1. Всеобщий характер законов природы
- •1.2. Понятия метода и методологии. Классификация методов научного познания
- •1.3. Общенаучные методы эмпирического познания. Наблюдение и эксперимент
- •1.4. Общенаучные методы теоретического познания. Абстрагирование и идеализация. Мысленный эксперимент
- •1.5. Формализация как метод теоретического познания. Язык науки
- •1.6. Индукция и дедукция как формально-логические методы познания. Основные методы индукции
- •Естествознание эпохи античности. Натурфилософия и ее место в истории естествознания. Возникновение античной науки
- •2.1. Естествознание эпохи Средневековья
- •2.2. Научные революции в истории естествознания. Естествознание эпохи Возрождения. Первая научная революция. Учение о множественности миров
- •2.3. Естествознание Нового времени. Научная революция XVII века. Создание классической механики и экспериментального естествознания
- •2.4. Естествознание Нового времени и проблема философского метода
- •2.5. Научная революция второй половины XVIII–XIX веков. Диалектизация естествознания
- •2.6. Исследования в области электромагнитного поля и начало крушения механистической картины мира
- •2.7. Естественнонаучная революция первых десятилетий XX века. Проникновение вглубь материи. Теория относительности и квантовая механика. Крушение механистической картины мира
- •2.8. Научно-техническая революция, ее исторические этапы и естественнонаучная составляющая
- •Понятия пространства, времени и материи. Фундаментальные взаимодействия
- •3.1. Гравитационное взаимодействие
- •3.2. Понятие о квантовой гравитации
- •3.3. Слабое взаимодействие
- •3.4. Электромагнитное взаимодействие
- •3.5. Сильное взаимодействие
- •3.6. Тенденции объединения взаимодействий
- •3.7. Концепции материи, движения, пространства и времени
- •Фундаментальные принципы и законы
- •4.1. Свойства пространства-времени и законы сохранения
- •4.2. Классическая концепция Ньютона
- •4.3. Статистические и термодинамические свойства макросистем
- •4.4. Электромагнитная концепция
- •4.5. Концепции дальнодействия и близкодействия
- •4.6. Дискретность и непрерывность материи
- •4.7. Сущность электромагнитной теории Максвелла
- •4.8. Корпускулярно-волновые свойства света
- •4.9. Основные концепции описания микромира
- •4.10. Постулаты Бора
- •4.11. Нуклонный уровень организации материи
- •4.12. Дефект массы и энергия связи
- •4.13. Релятивистская квантовая физика. Античастицы и виртуальные частицы
- •4.14. Физический вакуум в квантовой теории поля
- •Место и роль химии в современной цивилизации
- •5.1. Фундаментальные основы современной химии
- •5.2. Особенность и двуединая задача современной химии
- •Концептуальные уровни современной химии
- •5.3. Понятия «химический элемент» и «химическое соединение» с точки зрения современности
- •5.4. Учение о химических процессах
- •5.5. Эволюционная концепция в химии
- •5.6. Сущность химической эволюции
- •5.7. Превращение органических и неорганических соединений
- •5.8. Синтез веществ
- •5.9. Современный катализ
- •Природные процессы образования земных и внеземных веществ. Природные запасы сырья и превращение энергии
- •6.1. Природные запасы сырья и превращение энергии
- •Металлы
- •6.2. Неметаллическое сырье
- •Углерод
- •6.3. Вторичное сырье
- •6.4. Химические процессы и энергетика
- •6.5. Природные энергоресурсы
- •6.6. Источники электрической и тепловой энергии
- •6.7. Эффективность энергосистем
- •6.8. Радиоактивные изотопы
- •6.9. Плазмохимические процессы
- •Особенности биологического уровня организации материи
- •7.1. Важнейшие открытия второй половины XIX века, которые легли в основу современной биологии
- •7.2. Многогранность живого
- •7.3. Триединство концептуальных уровней познания в современной биологии
- •7.4. Структурные уровни организации живых систем
- •7.5. Развитие современной концепции биохимического единства всего живого
- •7.6. За счет чего функционирует энергетика живого?
- •7.7. Особенности термодинамики, самоорганизации и информационного обмена в живых системах
- •7.8. Роль генетического материала в воспроизводстве и эволюции живых организмов
- •Биологическая эволюция
- •8.1. Какие научные факты обосновывают эволюционность живого?
- •8.2. Исторически сформированные концепции происхождения жизни
- •8.3. Особенности условий на ранней Земле
- •8.4. Принципы биологической эволюции
- •Происхождение человека
- •9.1. Сущность современной эволюционной теории происхождения человека от животного предка
- •9.2. Роль естественного отбора и социальных факторов в эволюции человека как комплексном процессе антропосоциогенеза
- •9.3. Как современная наука определяет природу и сущность человека?
- •9.4. Что свидетельствует о сложности и многомерности внутреннего мира человека?
- •9.5. Какие факторы определяют природу человеческого сознания?
- •9.6. Как трактуется психика и сознание теорией отражения?
- •9.7. Чем характеризуются эмоции, чувства, интеллект с позиций гносеологии?
- •9.8. Суть феноменов человеческого воображения и памяти
- •9.9. Возможности психического управления телесными, соматическими процессами
- •Биоэтика и поведение человека
- •10.1. Истоки человеческой морали и этики
- •10.2. Сравнительный анализ социальных структур и социального поведения животных и человека
- •10.3. Чем определяются мотивации человеческого поведения?
- •10.4. Проблема смысла и цели человеческого бытия
- •10.5. Гуманистические позиции биоэтики
- •10.6. Какие факторы приводят к потере здоровья отдельного человека и популяции?
- •10.7. Различие между валеологическими и медико-биологическими подходами к оздоровлению
- •10.8. Что дают современные мировоззренческие знания для понимания природы здоровья?
- •Человек и биосфера
- •11.1. Основа организации и устойчивости биосферы
- •11.2. Эволюция биосферы
- •11.3. Суть и главная задача экологии
- •11.4. Основы целостного учения в.И. Вернадского о биосфере
- •11.5. Новое состояние биосферы в результате взаимодействия человека и природы
- •Эволюционно-синергетическая парадигма
- •12.1. Принципы синергетики
- •12.2. Сущность гуманитарного аспекта синергетики
- •Словарь терминов по курсу
- •Основная литература
- •Дополнительная литература
- •Учебное издание основы современного естествознания Курс лекций
- •210038, Г. Витебск, Московский проспект, 33. Основысовременногоестествознания Витебск 2007
6.8. Радиоактивные изотопы
Изотопы – разновидности химических элементов, у которых ядра атомов отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе элементов. Различают устойчивые (стабильные) и радиоактивные изотопы. Термин «изотопы» впервые предложил в 1910 г. Фредерик Содци (1877–1956), известный английский радиохимик, лауреат Нобелевской премии 1921 г., экспериментально доказавший образование радия из урана.
Применение радиоактивных изотопов. Радиоактивные изотопы широко применяются не только в атомной энергетике, но и в разнообразной приборной технике, медицине и т.п. В промышленно развитых странах выпускается множество приборов и аппаратов, содержащих радиоактивные изотопы. Все они служат для определения плотности, однородности, гигроскопичности и других характеристик материалов.
С помощью радиоактивных изотопов можно проследить за перемещением химических соединений при физических, технологических, биологических или химических процессах. Для этого используются меченые атомы (радиоактивные индикаторы). В исследуемое вещество вводят радиоактивные изотопы определенных элементов, тем самым метят его и затем наблюдают за движением меченых атомов. Данный способ позволяет исследовать механизмы реакций при превращениях веществ в сложных условиях, например в доменной печи или в аммиачном реакторе, а также изучать процессы обмена веществ в живых организмах. Например, введение изотопа азота-15 позволяет исследовать процесс биологического связывания азота воздуха растениями семейства бобовых (гороха, клевера, вики и др.). Изотоп кислорода-18 помогает выяснить механизм дыхания живых организмов.
Радиоактивный метод анализа вещества дает возможность определить содержание в нем различных металлов от кальция до цинка в чрезвычайно малых концентрациях – до 10–10 (для этого требуется всего лишь 10–12 г вещества).
Радиоактивные препараты оказались полезными и в медицинской практике. С их помощью осуществляется лечение многих заболеваний, в том числе и злокачественных опухолей.
Изотопы плутония-238, кюрия-224 и др. могут применяться для производства батарей небольшой мощности – от киловатта до милливатта, используемых, например, в приборах для стабилизации ритма сердца. При этом для бесперебойной работы на протяжении по крайней мере 10 лет достаточно всего 150–200 мг плутония (оксидортутные батареи служат до 4 лет).
В результате радиационно-химических реакций из кислорода образуется озон, из газообразных парафинов – водород и сложные соединения низкомолекулярных олефинов. Облучение полиэтилена, поливинилхлорида и других полимеров приводит к повышению их термостойкости и прочности. Можно привести множество других примеров практического применения изотопов и радиоактивного излучения. Вместе с тем отношение людей к радиации, особенно в последние десятилетия, резко изменилось. За примерно столетнюю историю радиоактивные источники прошли долгий путь от эликсира жизни до символа зла.