
- •Д.С. Фалеев
- •Оглавление
- •Глава 1. Место, роль и влияние на общественные отношения возобновляемых источников энергии 7
- •Глава 2. Солнечное излучение и его характеристики 18
- •Глава 3. Фотоэлектрические преобразователи солнечного излучения в электричество 36
- •Глава 6. Энергия волн 140
- •Глава 1. Место, роль и влияние на общественные отношения возобновляемых источников энергии
- •1.1. Введение
- •1.2. Теоретические основы использования возобновляемых источников энергии
- •1.3. Технические аспекты использования возобновляемых источников энергии
- •1.4. Совершенствование источников энергии и потребителей
- •1.5. Методы управления источниками возобновляемой энергии
- •1.6. Социально-экономические и экологические аспекты развития энергетики на возобновляемых источниках
- •Глава 2. Солнечное излучение и его характеристики
- •2.1. Введение
- •2.2. Солнечное излучение, достигающее атмосферы Земли
- •2.3. Взаимное расположение Земли и Солнца во времени
- •2.4. Расположение приемника радиации относительно Солнца
- •2.5. Влияние земной атмосферы на величину потока излучения Солнца
- •2.6. Расчет и оценки солнечной энергии
- •Глава 3. Фотоэлектрические преобразователи солнечного излучения в электричество
- •3.1. Введение
- •3.3. Механизм поглощения фотонов вp-n-переходе. Эффективность преобразования солнечного излучения
- •1КВтм-2/[(2эВ) 1,610-19Дж 4 эВ)] 31021фотонм-2с-1 .
- •3.4. Особенности электрической цепи содержащей солнечный фотоэлемент
- •3.5. Проблема эффективности солнечных элементов
- •3.6. Требования к материалам и технология производства солнечных элементов и батарей
- •3.7. Особенности конструкций солнечных элементов и их типы
- •3.8. Краткая характеристика материалов для солнечных элементов. Внутренняя структура солнечных элементов
- •3.9. Вспомогательные системы для солнечных батарей
- •3.10. Инженерный расчет системы энергоснабжения на базе солнечных модулей (батарей) применительно к железнодорожному транспорту
- •3.11. Примеры решения задач
- •3.12. Задачи
- •4. Гидроэнергетика
- •4.1. Введение
- •4.2. Основные методы использования энергии воды и оценка гидроресурсов для малых электростанций
- •4.3.Гидротурбины
- •4.4. Примеры решения задач
- •4.5. Задачи
- •5. Ветроэнергетика
- •5.1. Введение
- •5.2. Краткая классификация ветроэнергетических установок
- •5.3. Ветроустановки с горизонтальной и вертикальной осью
- •5.4. Теоретические основы ветроэнергетических установок
- •5.5. Лобовое давление на ветроколесо
- •5.6. Крутящий момент
- •5.7. Некоторые режимы работы ветроколеса
- •5.8. Общая характеристика ветров и их анализ
- •5.9. Использование ветроколесом энергии ветра
- •5.10. Производство и распределение электроэнергии от ветроэнергетических установок
- •5.11. Классификация ветроэнергетических установок
- •Классы ветроэнергетических систем
- •5.12. Примеры решения задач
- •5.13. Задачи
- •Глава 6. Энергия волн
- •6.1.Общая характеристика волнового движения жидкости. Уравнение поверхностной волны
- •6.2.Энергия и мощность волны. Отбор мощности от волн
- •6.3.Краткое описание устройств для преобразования энергии волн
- •6.4.Примеры решения задач
- •6.5.Задачи
- •Глава 7.Энергия приливов
- •7.1. Введение
- •7.2.Усиление приливов
- •7.3.Мощность приливных течений
- •7.5.Мощность приливного подъема воды
- •7.5.Примеры решения задач
- •7.5.Задачи
- •Глава 8. Аккумулирование энергии
- •8.1. Необходимость процессов аккумулирования энергии
- •8.2. Тепловые аккумуляторы
- •8.3. Воздушные аккумуляторы
- •8.4 Сверхпроводящие индуктивные накопители
- •8.5. Емкостные накопители
- •8.6. Химическое аккумулирование
- •8.7. Аккумулирование электроэнергии
- •8.8. Механическое аккумулирование. Гидроаккумулирующие электростанции
- •Заключение
- •Приложения Приложение 1
- •Приложение 2
- •Приложение 3
- •Список литературы
- •Дмитрий Серафимович Фалеев возобновляемые и ресурсосберегающие источники энергии
- •680021, Г. Хабаровск, ул. Серышева, 47
5.6. Крутящий момент
Для определения крутящего момента (момента силы) на выходе ветроколеса можно воспользоваться результатами расчетов лобового давления. При таком подходе не используется закон сохранения момента импульса в системе ветроколесо – набегающий поток, который здесь использовать довольно затруднительно.
Максимальный крутящий момент ветроколеса Тmax очевидно, не может превышать значения, равного произведению максимальной действующей на ветроколесо силы на максимальный радиус R, т.е.
Tmax = Fmax R , (5.26)
так как величина максимальной силы определяется сопротивлением (5.21), т.е.
Fmax
= ρ A1
U/ 2 .(5.27)
Следовательно,
Tmax
=
0,5 ρ A1
UR .(5.28)
В общем случае крутящий момент ветроколеса Т можно представить в виде
Т = Ст Тmax , (5.29)
где Ст – коэффициент крутящего момента.
Введем в рассмотрение параметр Z, называемый быстроходностью ветроколеса, равный отношению окружной скорости конца лопастей Vr к невозмущенной скорости набегающего потока U0, т.е.
Z = Vr/U0 = R / U0 , (5.30)
где – угловая скорость вращения ветроколеса.
Тогда, заменяя в (5.28) значение R его выражением из (5.30), получаем:
Tmax = A1 U02 (U0Z)/2 = P0Z/ , (5.31)
где Р0 – мощность ветрового потока из (5.2).
Так как мощность на валу есть мощность, развиваемая ветроколесом Р, то
Р = Тmax . (5.32)
Но согласно (5.15) Р = Ср Р0, или, с учетом уравнений (5.29) и (5.31) равенство (5.32) примет вид:
Ср Р0 = С Тmax ; Ср Р0 = Ст Р0 Z; Cр = Z Cт . (5.33)
Отметим, что на практике коэффициенты Cр и Cт не постоянны, являются функциями Z.
Согласно критерию Бетца (5.17), максимальное значение коэффициента Ср равно 0,59, поэтому в идеальном случае имеем
(Ст )max = 0,59/Z . (5.34)
На рис. 5.6 представлены характеристики реальных ветроколес.
Рис. 5.6. Зависимость коэффициента крутящего момента Ст от быстроходности Z для ветроколес с высоким геометрическим заполнением (1), низким (2) и критерий Бетца (3)
|
|
Из рис. 5.6 видно, что ветроколеса с высоким геометрическим заполнением развивают большой крутящий момент при относительно низких линейных скоростях, и, наоборот, ветроколеса с небольшим заполнением (например, с двумя лопастями) имеют небольшой крутящий момент, и даже иногда не могут самостоятельно раскрутиться. С увеличением значений Z коэффициент момента, а следовательно, и сам момент стремится к нулю. Максимальные значения коэффициента Ст для одних типов ветроколес реализуются при высоких скоростях ветра, при которых лобовые давления велики – вплоть до разрушительных. Необходимо также отметить, что максимальным значениям крутящего момента и КПД соответствуют различные значения Z.