
- •Оптика. Квантовая природа излучения.
- •1. Элементы геометрической и электронной оптики.
- •1. Основные законы оптики. Полноe отражение. Принцип Ферма.
- •2. Тонкие линзы. Изображение предметов с помощью линз.
- •3. Аберрации (погрешности) оптических систем
- •4. Элементы электронной оптики
- •2.Интерференция света.
- •5. Когерентность и монохроматичность световых волн
- •6. Интерференция света. Опыт Юнга.
- •7. Методы наблюдения интерференции света
- •8. Интерференции света в тонких пленках.
- •9. Применение интерференции света
- •3.Дифракция света
- •10.Принцип Гюйгенса — Френеля
- •11. Метод зон Френеля. Прямолинейноe распространение света.
- •12. Дифракция Френеля на круглом отверстии и диске.
- •13. Дифракция Фраунгофера на одной щели
- •14. Дифракция Фраунгофера на дифракционной решетке
- •15. Дифракция на пространственной решетке. Формула Вульфа — Брэггов.
- •16. Разрешающая способность оптических приборов.
- •17. Понятие о голографии
- •4.Взаимодействие электромагнитных волн с веществом
- •18. Дисперсия света. Электронная теория дисперсии света. Поглощение (абсорбция) света.
- •Электронная теория дисперсии света.
- •Поглощение (абсорбция) света.
- •19. Эффект Доплера
- •20. Естественный и поляризованный свет
- •21. Поляризация света при отражении и преломлении на границе двух диэлектриков. Закон Брюстера.
- •22. Двойное лучепреломление. Поляризационные призмы и поляроиды.
- •Поляризационные призмы и поляроиды.
- •23. Искусственная оптическая анизотропия.
- •24. Вращение плоскости поляризации.
- •Квантовая природа излучения.
- •25. Тепловое излучение и его характеристика.
- •26. Законы теплового излучения. (Закон Кирхгофа, законы Стефана – Больцмана и смещения Вина, формулы Рэлея – Джинса и Планка).
- •Законы Стефана — Больцмана и смещения Вина.
- •Формулы Рэлея — Джинса и Планка.
- •27. Оптическая пирометрия. Тепловые источники света.
- •28. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта.
- •29. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света. Применения фотоэффекта.
- •Применение фотоэффекта.
- •30. Эффект Комптона и его элементарная теория.
- •31. Масса и импульс фотона. Давление света. Корпускулярно-волновой дуализм.
- •Единство корпускулярных и волновых свойств электромагнитного излучения.
- •Элементы квантовой физики атомов, молекул и твердых тел
- •Теория атома водорода по Бору.
- •32.Модели атома Томсона и Резарфорда.
- •33. Линейчатый спектр атома водорода.
- •34. Постулаты Бора. Спектр атома водорода по Бору.
- •Спектр атома водорода по Бору.
- •35. Опыты Франка и Герца.
- •Элементы квантовой статистики.
- •36. Корпускулярно-волновой дуализм свойств вещества. Гипотеза де Бройля.
- •Некоторые свойства волн де Бройля.
- •37. Соотношение неопределенностей.
- •38. Волновая функция и ее статистический смысл. Принцип причинности в квантовой механике.
- •Принцип причинности в квантовой механике.
- •39. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний.
- •40. Движение свободной частицы.
- •41. Частица в одномерной прямоугольной «потенциальной яме» бесконечно высокими «стенками».
- •42. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект.
- •43. Линейный гармонический осциллятор в квантовой механике.
- •3. Элементы современной физики атомов и молекул.
- •44. Атом водорода в квантовой механике.
- •45. 1S-Состояние электрона в атоме водорода. Спин электрона. Спиновое квантовое число.
- •Спин электрона. Спиновое квантовое число.
- •46. Принцип неразличимости тождественных частиц. Квантовая статистика Бозе – Эйнштейна и Ферми – Дирака. Фермионы и бозоны.
- •47. Принцип Паули. Распределение электронов в атоме по состояниям. Периодическая система элементов Менделеева.
- •Периодическая система элементов Менделеева.
- •48. Рентгеновские спектры. Молекулярные спектры. Комбинационное рассеяние света.
- •Молекулярные спектры. Комбинационное рассеяние света.
- •49. Поглощение. Спонтанное и вынужденное излучения. Оптические квантовые генераторы.
- •Оптические квантовые генераторы (лазеры).
- •Применения лазеров в настоящее время столь обширны, что даже их перечисление в объеме настоящего курса просто невозможно. § 236. Вырожденный электронный газ в металлах
- •4.Элементы квантовой статистики.
- •50.Вырожденный электронный газ в металлах.
- •51. Понятие о квантовой теории теплоемкости. Фононы.
- •52. Выводы квантовой теории электропроводности металлов.
- •53. Сверхпроводимость. Понятие об эффекте Джозефсона.
- •Элементы физики твердого тела
- •54. Понятие о зонной теории твердых тел. Металлы, диэлектрики и полупроводники.
- •Металлы, диэлектрики и полупроводники по зонной теории.
- •55. Собственная проводимость полупроводников. Примесная проводимость полупроводников.
- •Примесная проводимость полупроводников.
- •56. Фотопроводимость полупроводников
- •57. Контакт двух металлов по зонной теории.
- •58. Термоэлектрические явления и их применение.
- •59. Выпрямление на контакте металл — полупроводник.
- •60. Контакт электронного и дырочного полупроводников (р-п-переход).
- •61. Полупроводниковые диоды и триоды (транзисторы).
33. Линейчатый спектр атома водорода.
Исследования спектров излучения разреженных газов (т. е. спектров излучения отдельных атомов) показали, что каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спектральных линий или групп близко расположенных линий. Самым изученным является спектр наиболее простого атома — атома водорода.
Швейцарский ученый И. Бальмер (1825—1898) подобрал эмпирическую формулу, описывающую все известные в то время спектральные линии атома водорода в видимой области спектра:
(209.1)
где R' = 1,10107 м-1—постоянная Ридберга*. Так какv=c/A, то формула (209.1) может быть переписана для частот:
(209.2)
где R = R'с = 3,291015 с-1 — также постоянная Ридбeрга.
Из выражений (209.1) и (209.2) вытекает, что спектральные линии, отличающиеся различными значениями л, образуют группу или серию линий, называемую серией Бальмера. С увеличением л линии серии сближаются; значение n = определяет границу серии, к которой со стороны больших частот примыкает сплошной спектр.
В дальнейшем (в начале XX в.) в спектре атома водорода было обнаружено еще несколько серий. В ультрафиолетовой области спектра находится серия Лаймана:
В инфракрасной области спектра были также обнаружены:
серия Пашена
серия Брэкета
серия Пфунда
серия Хэмфри
Все приведенные выше серив в спектре атома водорода могут быть описаны одной формулой, называемой обобщенной формулой Бальмера:
(209.3)
где т имеет в каждой данной серии постоянное значение, т= 1, 2, 3, 4, 5, 6 (определяет серию), п принимает целочисленные значения начиная с т+1 (определяет отдельные линии этой серии).
Исследование более сложных спектров — спектров паров щелочных металлов (на пример, Li, Na, К) — показало, что они представляются набором незакономерно расположенных линий. Ридбергу удалось разделить их на три серии, каждая из которых располагается подобно линиям бальмеровской серии.
Приведенные выше сериальные формулы подобраны эмпирически и долгое время не имели теоретического обоснования, хотя и были подтверждены экспериментально с очень большой точностью. Приведенный выше вид сериальных формул, удивительная повторяемость в них целых чисел, универсальность постоянной Ридберга свидетельствуют о глубоком физическом смысле найденных закономерностей, вскрыть который в рамках классической физики оказалось невозможным.
34. Постулаты Бора. Спектр атома водорода по Бору.
Первая попытка построить качественно новую — квантовую — теорию атома была предпринята в 1913 г. датским физиком Нильсом Бором (1885—-1962). Он поставил перед собой цель связать в единое целое эмпирические закономерности линейчатых спектров, ящерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил два постулата.
Первый постулат Бора (постулат стационарных состояний): в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн.
В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантованные значения момента импульса, удовлетворяющие условию
(210.1)
где т, — масса электрона, v — его скорость по n-й орбите радиуса rn,
ℏ = h/(2).
Второй постулат Бора (правило частот): при переходе электрона с одной стационар ной орбиты на другую излучается (поглощается) один фотон с энергией
(210.2)
равной разности энергий соответствующих стационарных состоянии (Еn и Еm — соответственно энергии стационарных состояний атома до и после излучения (поглощения)). При Ет<Еп происходит излучение фотона (переход атома из состояния с боль шей энергией в состояние с меньшей энергией, т. с. переход электрона с более удален ной от ядра орбиты на более близлежащую), при Ет>Еn— его поглощение (переход атома в состояние с большей энергией, т. е. переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот v = (Еn – Еm)/h квантовых переходов и определяет линейчатый спектр атома.