
- •Оптика. Квантовая природа излучения.
- •1. Элементы геометрической и электронной оптики.
- •1. Основные законы оптики. Полноe отражение. Принцип Ферма.
- •2. Тонкие линзы. Изображение предметов с помощью линз.
- •3. Аберрации (погрешности) оптических систем
- •4. Элементы электронной оптики
- •2.Интерференция света.
- •5. Когерентность и монохроматичность световых волн
- •6. Интерференция света. Опыт Юнга.
- •7. Методы наблюдения интерференции света
- •8. Интерференции света в тонких пленках.
- •9. Применение интерференции света
- •3.Дифракция света
- •10.Принцип Гюйгенса — Френеля
- •11. Метод зон Френеля. Прямолинейноe распространение света.
- •12. Дифракция Френеля на круглом отверстии и диске.
- •13. Дифракция Фраунгофера на одной щели
- •14. Дифракция Фраунгофера на дифракционной решетке
- •15. Дифракция на пространственной решетке. Формула Вульфа — Брэггов.
- •16. Разрешающая способность оптических приборов.
- •17. Понятие о голографии
- •4.Взаимодействие электромагнитных волн с веществом
- •18. Дисперсия света. Электронная теория дисперсии света. Поглощение (абсорбция) света.
- •Электронная теория дисперсии света.
- •Поглощение (абсорбция) света.
- •19. Эффект Доплера
- •20. Естественный и поляризованный свет
- •21. Поляризация света при отражении и преломлении на границе двух диэлектриков. Закон Брюстера.
- •22. Двойное лучепреломление. Поляризационные призмы и поляроиды.
- •Поляризационные призмы и поляроиды.
- •23. Искусственная оптическая анизотропия.
- •24. Вращение плоскости поляризации.
- •Квантовая природа излучения.
- •25. Тепловое излучение и его характеристика.
- •26. Законы теплового излучения. (Закон Кирхгофа, законы Стефана – Больцмана и смещения Вина, формулы Рэлея – Джинса и Планка).
- •Законы Стефана — Больцмана и смещения Вина.
- •Формулы Рэлея — Джинса и Планка.
- •27. Оптическая пирометрия. Тепловые источники света.
- •28. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта.
- •29. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света. Применения фотоэффекта.
- •Применение фотоэффекта.
- •30. Эффект Комптона и его элементарная теория.
- •31. Масса и импульс фотона. Давление света. Корпускулярно-волновой дуализм.
- •Единство корпускулярных и волновых свойств электромагнитного излучения.
- •Элементы квантовой физики атомов, молекул и твердых тел
- •Теория атома водорода по Бору.
- •32.Модели атома Томсона и Резарфорда.
- •33. Линейчатый спектр атома водорода.
- •34. Постулаты Бора. Спектр атома водорода по Бору.
- •Спектр атома водорода по Бору.
- •35. Опыты Франка и Герца.
- •Элементы квантовой статистики.
- •36. Корпускулярно-волновой дуализм свойств вещества. Гипотеза де Бройля.
- •Некоторые свойства волн де Бройля.
- •37. Соотношение неопределенностей.
- •38. Волновая функция и ее статистический смысл. Принцип причинности в квантовой механике.
- •Принцип причинности в квантовой механике.
- •39. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний.
- •40. Движение свободной частицы.
- •41. Частица в одномерной прямоугольной «потенциальной яме» бесконечно высокими «стенками».
- •42. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект.
- •43. Линейный гармонический осциллятор в квантовой механике.
- •3. Элементы современной физики атомов и молекул.
- •44. Атом водорода в квантовой механике.
- •45. 1S-Состояние электрона в атоме водорода. Спин электрона. Спиновое квантовое число.
- •Спин электрона. Спиновое квантовое число.
- •46. Принцип неразличимости тождественных частиц. Квантовая статистика Бозе – Эйнштейна и Ферми – Дирака. Фермионы и бозоны.
- •47. Принцип Паули. Распределение электронов в атоме по состояниям. Периодическая система элементов Менделеева.
- •Периодическая система элементов Менделеева.
- •48. Рентгеновские спектры. Молекулярные спектры. Комбинационное рассеяние света.
- •Молекулярные спектры. Комбинационное рассеяние света.
- •49. Поглощение. Спонтанное и вынужденное излучения. Оптические квантовые генераторы.
- •Оптические квантовые генераторы (лазеры).
- •Применения лазеров в настоящее время столь обширны, что даже их перечисление в объеме настоящего курса просто невозможно. § 236. Вырожденный электронный газ в металлах
- •4.Элементы квантовой статистики.
- •50.Вырожденный электронный газ в металлах.
- •51. Понятие о квантовой теории теплоемкости. Фононы.
- •52. Выводы квантовой теории электропроводности металлов.
- •53. Сверхпроводимость. Понятие об эффекте Джозефсона.
- •Элементы физики твердого тела
- •54. Понятие о зонной теории твердых тел. Металлы, диэлектрики и полупроводники.
- •Металлы, диэлектрики и полупроводники по зонной теории.
- •55. Собственная проводимость полупроводников. Примесная проводимость полупроводников.
- •Примесная проводимость полупроводников.
- •56. Фотопроводимость полупроводников
- •57. Контакт двух металлов по зонной теории.
- •58. Термоэлектрические явления и их применение.
- •59. Выпрямление на контакте металл — полупроводник.
- •60. Контакт электронного и дырочного полупроводников (р-п-переход).
- •61. Полупроводниковые диоды и триоды (транзисторы).
Электронная теория дисперсии света.
Из макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды
где — диэлектрическая проницаемость среды, — магнитная проницаемость. В оптической области спектра для всех веществ 1, поэтому
(186.1)
Из формулы (186.1) выявляются некоторые противоречия с опытом: величина n, являясь переменной (см. § 185), остается в то же время равной определенной постоянной - . Кроме того, значения n, получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения электромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.
Применим электронную теорию дисперсии света для однородного диэлектрика, предположив формально, что дисперсия света является следствием зависимости от частоты световых волн. Диэлектрическая проницаемость вещества, по определению (см. (88.6) и (88.2)), равна
где æ — диэлектрическая восприимчивость среды, 0 — электрическая постоянная, Р — мгновенное значение поляризованности. Следовательно,
(186.2)
т. е. зависит от Р. В данном случае основное значение имеет электронная поляризация, т. е. вынужденные колебания электронов под действием электрической составляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока (v 1015 Гц).
В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные с ядром электроны — оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е — заряд электрона, х — смещение электрона под действием электрического поля световой волны. Если концентрация атомов в диэлектрике равна n0 то мгновенное значение поляризованности
Из (186.2) и
(186.3) получим
(186.3)
(186.4)
Следовательно, задача сводится к определению смещения х электрона под действием внешнего поля Е. Поле световой волны будем считать функцией частоты со, т. е. изменяющимся по гармоническому закону: E = E0cost.
Уравнение вынужденных колебаний электрона (см. § 147) для простейшего случая (без учета силы сопротивления, обусловливающей поглощение энергии падающей волны) запишется в виде
(186.5)
где
F0
=
eE0
—
амплитудное значение силы, действующей
на электрон со стороны поля волны,
— собственная частота колебаний
электрона,m
— масса электрона. Решив уравнение
(186.5), найдем
= n2
в зависимости от констант атома (е, m,
0)
и частоты
внешнего
поля, т. е. решим задачу дисперсии.
Решение уравнения (186.5) можно записать
в виде
где
(186.6)
(186.7)
в чем легко убедиться подстановкой (см. (147.8)). Подставляя (186.6) и (186.7) в (186.4), получим
(186.8)
Если в веществе имеются различные заряды eh совершающие вынужденные колебания с различными собственными частотами еа0|, то
(186.9)
где m1 — масса i-го заряда.
Из выражений (186.8) и (186.9) вытекает, что показатель преломления л зависит от частоты внешнего поля, т. е. полученные зависимости действительно подтверждают явление дисперсии света, хотя и при указанных выше допущениях, которые в дальнейшем надо устранить. Из выражений (186.8) и (186.9) следует, что в области от = 0 до = 0n2 больше единицы и возрастает с увеличением w (нормальная дисперсия); при w = w0n2 = ± ; в области от w = w0 до w = n2 меньше единицы и возрастает от - до 1 (нормальная дисперсия). Перейдя от n2 к n, получим, что график зависимости n от w имеет вид, изображенный на рис. 270.
Рис. 270
Такое поведение n вблизи w0 — результат допущения об отсутствии сил сопротивления при колебаниях электронов. Если принять в расчет и это обстоятельство, то график функции л (со) вблизи too задается штриховой линией АВ. Область АВ — область аномальной дисперсии (n убывает при возрастании w), остальные участки зависимости n от w описывают нормальную дисперсию (n возрастает с возрастанием w).
Российскому физику Д. С. Рождественскому (1876—1940) принадлежит классическая работа по изучению аномальной дисперсии в парах натрия. Он разработал интерференционный метод для очень точного измерения показателя преломления паров и экспериментально показал, что формула (186.9) правильно характеризует зависимость n от w, а также ввел в нее поправку, учитывающую квантовые свойства света и атомов.