
- •7.1. Задачи и виды нивелирования
- •7. Стереофотограмметрическое нивелирование основано на определении превышения по паре фотоснимков одной и той же местности, полученных из двух точек базиса фотографирования.
- •7.2. Способы геометрического нивелирования
- •7.3. Классификация нивелиров
- •7.5. Влияние кривизны Земли и рефракции на результаты нивелирования
- •8.1. Принцип организации съемочных работ
- •8.2. Назначение и виды государственных геодезических сетей
- •8.3. Плановые государственные геодезические сети. Методы их создания
- •8.4. Высотные государственные геодезические сети
- •8.5. Геодезические съемочные сети
8.4. Высотные государственные геодезические сети
Государственная высотная геодезическая сеть – это нивелирная сеть I, II, III и IV классов. При этом сети I и II классов являются высотной основой, с помощью которой устанавливается единая система высот на всей территории страны.
На линиях I, II, III и IV классов закладывают вековые, фундаментальные, грунтовые, скальные, стенные и временные реперы.
Вековые и фундаментальные реперы закладываются в скальные породы или в грунт. Они отличаются повышенной устойчивостью и обеспечивают сохранность высотной основы на длительное время. Вековыми реперами закрепляют места пересечений линий нивелирования I класса, а фундаментальные – закладывают на линиях I и II классов не реже, чем через 60 км.
Временные реперы используют в качестве высотной основы при топографических съёмках, а также включают в линии нивелирования II, III и IV классов.
8.5. Геодезические съемочные сети
Съемочные сети являются геодезической основой при решении инженерно-геодезических задач. Их создают в качестве съемочного обоснования для производства топографических съемок, выноса на местность инженерных сооружений, а также для плановой и высотной привязки отдельных объектов.
Съемочное обоснование разбивается от пунктов плановых и высотных опорных сетей.
Самый распространенный вид съемочного обоснования – теодолитные ходы (рис. 69), опирающиеся на один или два исходных пункта. Они представляют собой геодезические построения в виде ломаных линий, в которых углы измеряют одним полным приёмом с помощью технического теодолита, а стороны – стальной 20-метровой лентой или дальномерами, обеспечивающими заданную точность. Теодолитные ходы могут быть замкнутыми или разомкнутыми.
Рис. 69. Теодолитные ходы: замкнутый (а); разомкнутый (б).
Длины линий (сторон) теодолитных ходов зависят от масштаба съемки и условий снимаемой местности и должны быть не более 350 м и не менее 20 м. Относительные линейные невязки в ходах должны быть менее 1:2000, при неблагоприятных условиях измерений допускается 1:1000.
Углы поворота на точках хода измеряют теодолитом со средней квадратической ошибкой 0,5' одним приемом. Расхождение значений углов в полуприемах не более двойной точности теодолита.
Точки съемочного обоснования, как правило, закрепляют на местности временными знаками: деревянными кольями, столбами, металлическими штырями, трубами.
Если эти точки предполагается использовать в дальнейшем для других целей, их закрепляют постоянными знаками.
.6. Плановая привязка вершин теодолитного хода к пунктам ГГС
Совокупность геодезических измерений и вычислений, необходимых для определения положения вершин теодолитного хода в государственной системе координат, называется привязкой.
Привязку можно выполнить несколькими методами.
1. Плановая привязка методом угловой засечки (рис. 70).
Рис. 70. Привязка теодолитного хода методом угловой засечки.
Дано:
А ;
В
.
Измереные
углы:
Контроль
измерений: ;
Найти
координаты точки 1 ;
дирекционный угол
.
1. Решение обратной геодезической задачи
Контроль
:
2. Решение треугольника привязки
;
3. Передача дирекционных углов
Контроль
вычислений:
4. Решение прямой геодезической задачи
|
|
|
|
|
|
|
|
Если расхождение в координатах не более 0,02 м, то находят средние значения координат X1 и Y1.
2. Метод снесения координат (рис. 71).
Рис. 71. Привязка методом снесения координат
Дано: А (XA ; YA ) ; В (XВ ; YВ ).
Измеренные:
Контроль:
Найти координаты точки 1 (X1 ; Y1 ); дирекционный угол (1 - 2) .
1. Решение обратной геодезической задачи.
2. Решение треугольника привязки
3. Передача дирекционных углов.
4. Решение прямой геодезической задачи.
3. Метод привязки теодолитного хода к одному опорному пункту с известным направлением в нем (рис. 72)..
Рис. 72. Привязка к одному пункту с известным направлением.
Дано:
А (XA ;
YA ) ;
Измерено:
S; углы:
Контроль:
Найти координаты точки 1 (X1 ; Y1 ); дирекционный угол (1 - 2) .
1. Передача дирекционных углов
2.Решение прямой геодезической задачи.
Для контроля привязки необходимо другую вершину теодолитного хода привязать к опорному пункту.