- •1.2.2. Реальное строение металлических кристаллов
- •1.2.3. Анизотропия кристаллов
- •1.2.4. Физико-механические и технологические свойства
- •2.2. Аллотропия (полиморфизм) металлов
- •2.3. Основные сведения о сплавах
- •6. Сварка металлов и сплавов
- •4.1. Влияние углерода и постоянных примесей на свойства сталей
- •4.2. Классификация и маркировка сталей и чугунов
- •Механические свойства углеродистых сталей
- •Свойства углеродистых качественных сталей (гост 1050-80)
- •4.3. Характеристика строительных сталей
- •6.1. Классификация способов сварки
- •6.2. Металлургия сварки плавлением
- •6.3. Особенности кристаллизации сварочной ванны
- •Средние размеры участков зоны термического влияния при различных способах сварки
Металлами называются вещества, атомы которых располагаются в определённом геометрическом порядке, образуя при этом кристаллы. Им присущ специфический металлический блеск. Кроме того, металлы обладают хорошей пластичностью, высокой теплопроводностью и электропроводностью. Это дает возможность обрабатывать их под давлением (прокатка, ковка, штамповка, волочение). Металлы обладают хорошими литейными свойствами, а также свариваемостью, способны работать при низких и высоких температурах. Металлические изделия и конструкции легко соединяются с помощью болтов, заклепок и сварки. Наряду с этим металлы обладают и существенными недостатками: имеют большую плотность, при действии различных газов и влаги коррозируют, а при высоких температурах значительно деформируются.
Существует такое определение как «чистый металл» оно весьма условно. Так как любой чистый металл содержит примеси, а потому его следует рассматривать как сплав. Под термином «чистый металл» всегда понимается металл, содержащий примеси 0,01–0,001 %. Современная металлургия позволяет получать металлы высокой чистоты (99,999 %). Однако примеси даже в малых количествах могут оказывать существенное влияние на свойства металла.
Чистые металлы обладают высокой пластичностью и низкой прочностью, что не обеспечивает требуемых физико-химических и технологических свойств. Поэтому их применение в строительстве и технике в качестве конструкционных материалов сильно ограничено. Наиболее широко используют сплавы, обладающие более высокой прочностью, твердостью и износостойкостью и т. д.
Сплавы – это системы, состоящие из нескольких металлов или металлов и неметаллов. Так, например, прочность технического железа составляет примерно 250 МПа, при введении в железо углерода в количестве 0,9 мас. % прочность повышается до 980 МПа. Все металлы и образованные из них сплавы делят на две группы: черные и цветные [11].
К черным металлам относятся железо и сплавы на его основе – стали и чугуны, остальные металлы являются цветными. В строительстве в основном применяют черные металлы – чугуны и стали для каркасов зданий, мостов, труб, кровли, арматуры в бетоне и для других металлических конструкций и изделий.
К цветным металлам относятся все металлы и сплавы на основе алюминия, меди, цинка, титана. Цветные металлы являются более дорогостоящими и дефицитными.
Чугун получают в ходе доменного процесса, основанного на восстановлении железа из его природных оксидов коксом при высокой температуре. Процесс восстановления железа оксидом углерода в верхней части доменной печи можно представить по обобщенной схеме: Fe2O3 > Fe3O4 > >FeO > Fe. Опускаясь в нижнюю часть печи, расплавленное железо соприкасается с коксом и превращается в чугун.
Чугуны в зависимости от состава и структуры подразделяются на серые (углерод в виде цементита и свободного графита) и белые (углерод в виде цементита). В зависимости от формы графита и условий его образования различают: серый, высокопрочный и ковкий чугуны.
Стали можно подразделить на две основные группы – углеродистые и легированные (рис. 1).
Углеродистые стали – основной конструкционный материал, который используется в различных областях промышленности. Они дешевле легированных и проще в производстве. В углеродистой стали свойства зависят от количества углерода, поэтому эти стали классифицируются на низкоуглеродистые, средне- и высокоуглеродистые.
Легированные стали содержат специально вводимые элементы для получения заданных свойств. По степенилегированости стали подразделяются на низколегированные, средне- и высоколегированные.
Классификация сталей по качеству основывается на содержании вредных примесей серы и фосфора. Различают углеродистую сталь обыкновенного качества, сталь качественную конструкционную и сталь высококачественную.
По назначению стали подразделяются на три группы: конструкционные, инструментальные и с особыми свойствами. Конструкционные углеродистые стали содержат углерод в количестве 0,02 – 0,7 мас.%, к ним относятся и строительные стали, содержащие до 0,3 мас.% углерода. Низкое содержание углерода обусловлено тем, что строительные конструкции соединяются сваркой, а углерод ухудшает свариваемость. Стали, содержащие углерод в пределах 0,7 – 1,5 мас.%, используют для изготовления режущего и ударного инструмента. К группе сталей и сплавов с особыми свойствами относятся коррозионностойкие, нержавеющие и кислотоупорные, жаропрочные и жаростойкие стали и т. д.
Основные типы кристаллических решеток
Строение кристаллической решетки описывается элементарной ячейкой. Элементарная ячейка – это наименьший объем кристалла, дающий представление о строении всего кристалла. Характеристики ячейки – ребра a,b, c и углы между ними α, β, γ; отрезки a, b, c называются периодами решетки.
|
В металлах атомы располагаются в строгом порядке, как атомы в плоскости образуют атомную сетку, а в пространстве – атомнокристаллическую решетку (рис. 2). Линии на этих схемах являются условными; в действительности никаких линий не существует, а атомы колеблются возле точек равновесия, т. е. узлов решетки с большой частотой. Типы кристаллических решеток различны. Наиболее часто встречаются следующие решетки: кубическая объемно-центрированная, кубическая гранецентрированная и гексагональная плотноупакованная. Элементарные ячейки таких кристаллических решеток приведены на рис. 3. В ячейке кубической объемно-центрированной решетки атомы расположены в вершинах куба и в её центре; такую решетку имеют хром, ванадий, вольфрам, молибден и др. В ячейке кубической гранецентрированной решетки атомы расположены в вершинах и в центре каждой грани куба; такой решеткой обладают алюминий, никель, медь, свинец и др. |
| ||
Рис. 3. Элементарные ячейки кристаллических решеток: а – кубическая объемно-центрированная; б – кубическая гранецентрированная; в – гексагональная |
В ячейке гексагональной решетки атомы расположены в вершинах шестиугольных оснований призмы, в центре этих оснований и внутри призмы; гексагональную решетку имеют магний, титан, цинк и др. В реальном металле кристаллическая решетка состоит из огромного количества ячеек.
1.2.2. Реальное строение металлических кристаллов
Необходимо знать, что порядок в расположении атомов (упаковка) имеется не по всему объему кристалла (кристаллической решетки). В реальности кристаллы в структуре металла имеют структурные несовершенства: точечные, линейные иповерхностные.
Точечные несовершенства – это дефекты, которые в трёх пространственных измерениях (X, Y, Z) малы, при этом их размеры не превышают нескольких атомных диаметров. Известно, что атомы находятся в колебательном движении, чем выше температура, тем больше амплитуда этих колебаний. Большинство атомов металла в кристаллической решетке обладает одинаковой (средней)энергией и колеблется с одинаковой амплитудой, а отдельные атомы имеют энергию, значительно превышающую среднюю энергию. Такие атомыобладают не только большей амплитудой колебаний, но и способны перемещаться из одного места расположения в другое. Как правило, наиболее легко передвигаются атомы поверхностного слоя, выходя на поверхность (например, атом 1, рис. 4,а). Участок, где находился такой атом (свободный узел), называется вакансией, которая не остается свободной. Через некоторое время в нее перемещается один из соседних атомов из более глубокого слоя (например, атом 2, рис. 4,б), а покинутый им узел также становится вакансией; затем перемещается, например, атом 3 (рис. 4,в) и т. д. Таким образом, вакансия перемещается в глубь кристалла. Как видно из рис. 4,г,вакансия искажает кристаллическую решетку. Количество вакансий увеличивается с повышением температуры, и они чаще переходят из одного узла в другой. Вакансии играют основную роль в диффузионных процессах, протекающих в металлах. |
Точечные несовершенства появляются и как результат присутствия атомов примесей. Атомы примесей или замещают атомы основного металла в кристалле решетки, или располагаются внутри кристаллической решетки искажая её.
Линейные несовершенства называются дислокациями. Они имеют малые размеры в двух измерениях и большую протяженность в третьем. Имеются различные виды дислокаций, одной из которых является краевая (линейная) дислокация.
В идеальном кристалле происходит сдвиг на одно межатомное расстояние одной части кристалла относительно другой, вдоль какой-либо атомной плоскости на участке ADEF (рис. 5,а). Как видно, влево сдвинулась только часть кристалла, находящаяся правее плоскости ABCD. При таком сдвиге число рядов атомов в верхней части кристалла на один больше, чем в нижней (рис. 5,б). Плоскость ABCD (рис. 5,а) представляет собой в данном случае как бы лишнюю атомную плоскость (называемую экстра-плоскостью), вставленную в верхнюю часть кристалла (АВ, рис. 5,б). Линия AD (рис. 5,а), перпендикулярная направлению сдвига, являющаяся краемэкстраплоскости, называется краевой или линейной дислокацией, длина которой может достигать многих тысяч межатомных расстояний. Особым свойством дислокаций является их подвижность. Объясняется это тем, что кристаллическая решетка в зоне дислокаций упруго искажена, атомы в этой зоне смещены относительно их равновесного положения в кристаллической решетке и поэтому атомы, образующие дислокацию, стремятся переместиться в равновесное положение. |
Необходимо знать, что дислокации рождаются в процессе кристаллизации, пластической деформации, термической обработки и т.д.
Они присутствуют в металлических кристаллах в огромном количестве (106–1012 см-2). Большое влияние на механические и многие другие свойства металлов и сплавов оказывают не только плотность, но и расположение дислокаций в объёме.
Поверхностными несовершенствами являются границы зерен и блоков металла. Они малы только в одном измерении. На границе между зернами атомы имеют менее правильное расположение, чем в объеме зерна. Зернаразориентированы, повернуты друг относительно друга на несколько градусов. По границам зерен скапливаютсядислокации и вакансии. Зерно состоит из большого числа разориентированных на очень небольшие углы (десятые доли градусов) областей, называемых субзернами или блоками (рис. 6). Границы блоков представляют собой дислокации, разделяющие зерно на блоки.