
- •1. Определение математической модели и математического моделирования
- •2. Основные этапы математического моделирования
- •3. Свойства математических моделей
- •4 Требования к математическим моделям
- •5 Классификация моделей
- •6. Иерархия мм и формы представления
- •7. Краевые задачи проектирования
- •9. Мм на микроуровне
- •13. Методика получения функциональных моделей
- •14. Метод получения топологических уравнений
- •15. Метод конечных элементов
- •16. Метод конечных разностей
- •17. Метод граничных элементов
- •18. Аналогии компонентных уравнений
- •19. Аналогии топологических уравнений
- •20. Получение эквивалентных схем технических объектов.
- •21. Аппроксимация табличных данных. Метод наименьших квадратов.
- •23. Метод Ритца-Галеркина
- •25. Табличный метод получения математических моделей систем
- •26. Узловой метод получения математических моделей систем.
- •28. Метод вращения Якоби
- •29. Методы решения систем линейных и нелинейных алгебраических уравнений.
- •30. Анализ в частотной области.
- •31. Сравнение методов конечныx элементов и конечных разностей
- •33. Математические модели дискретных устройств.
- •34. Многовариантный анализ.
- •35. Основные сведения из теории массового обслуживания
- •36. Имитационное моделирование смо
- •38. Геометрические модели
- •39. Методы и алгоритмы машинной графики.
6. Иерархия мм и формы представления
Деление описаний объектов на аспекты и иерархические уровни непосредственно касается математических моделей. Использование принципов блочно-иерархического подхода к проектированию приводит к появлению иерархии математических моделей проектируемых объектов. Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Однако для большинства предметных областей можно отнести имеющиеся иерархические уровни к одному из трех обобщенных уровней, называемых далее микро-, макро - и метауровнями.
В зависимости от места в иерархии математические модели делятся на ММ, относящиеся к микро-, макро- и метауровням.
Особенностью ММ на микроуровне является отражение физических процессов, протекающих в непрерывных пространстве и времени. Типичные ММ на микроуровне — дифференциальные уравнения в частных производных (ДУЧП). В них независимыми переменными являются пространственные координаты и время. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрических потенциалов, давлений, температур и т. п. Возможности применения ММ в виде ДУЧП ограничены отдельными деталями, попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти.
На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). В этих уравнениях независимой переменной является время t, а вектор зависимых переменных V составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости механических систем, напряжения и силы тока электрических систем, давления и расходы гидравлических и пневматических систем и т. п. Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить в виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 103, то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям на метауровне.
На метауровне в качестве элементов принимают достаточно сложные совокупности деталей. Метауровень характеризуется большим разнообразием типов используемых ММ. Для многих объектов ММ на метауровне по-прежнему представляются системами ОДУ. Однако так как в моделях не описываются внутренние для элементов фазовые переменные, а фигурируют только фазовые переменные, относящиеся к взаимным связям элементов, то укрупнение элементов на метауровне означает получение ММ приемлемой размерности для существенно более сложных объектов, чем на макроуровне.
Модель может быть представлена различными способами:
- инвариантная - запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели;
- аналитическая - запись модели в виде результата аналитического решения исходных уравнений модели;
- алгоритмическая - запись соотношений модели и выбранного численного метода решения в форме алгоритма;
- схемная (графическая) - представление модели на некотором графическом языке (например, язык графов, эквивалентные схемы, диаграммы и т.п.);
- физическая;
- аналоговая.