
- •Конспект лекций
- •Владикавказ
- •Математическое моделирование элементов сложных экологических систем
- •Лекция 1. Введение в моделирование. Исторический экскурс.
- •1. Основы моделирования в экологии 1.1. Общие принципы построения моделей в экологии
- •Лекция 2.
- •2.1. Элементы моделирования
- •2.2. Этапы построения математической модели
- •1.4. Элементы теории подобия, применяемые в моделировании
- •Лекция 3
- •3.2. Экологические модели
- •3.2.1. Основы экологометрики
- •3.2.2. Выборочный метод в экологометрике.
- •Зависимость числа интервалов от объема выборки
- •Статистический ряд по интервалам
- •Лекция 4. Статистические оценки параметров распределения случайных величин по выборкам
- •4.4. Статистические оценки гипотез об экологических моделях
- •Определение вариантов выборок
- •Выборка из генеральной совокупности
- •Статистическая таблица
- •Лекция 5.
- •Результаты эксперимента
- •Статистическая таблица эксперимента
- •Пример преобразования членов уравнения регрессии
- •Вычисление данных для линеаризации уравнения регрессии
- •Нормальные уравнения мнк для некоторых функций
- •Статистическое оценивание уравнения регрессии и парной корреляции.
- •Обработка результатов наблюдений
- •Лекция 6.
- •Рекомендации по выбору вида функции
- •3.4. Динамические статистические модели
- •Посадка леса
- •Данные по объему сброса качественных сточных вод
- •Данные по объему сброса сточных вод за 5-летие
- •Пример расчета 5-летних средних
- •Условное обозначение времени
- •Расчетные значения для определения уравнения динамики
- •Ряд динамики для определения сезонных колебаний
- •Лекция 7. Многофакторные эколого-математические модели. Анализ влияния отдельных факторов в экологической модели.
- •Эксперименталъный материал исследования
- •Результаты проведенных опытов
- •8.1. Анализ влияния отдельных факторов в экологической модели.
- •Лекция 9. Методы оптимизации. Метод Лагранжа
- •Лекция 10. Метод линейного программирования.
- •Лекция 11. Функциональные модели.
- •Лекция 12. Модели процессов содержащие обыкновенные дифференциальные уравнения.
- •Численные ошибки использованных для вычисления данных
- •Лекция 13. Статистические модели динамики.
- •Лекция 14. Балансовые модели.
- •Лекция 15.
- •Лекция 16. Информационные технологии в экологии. Экологические информационные системы.
- •1 6.1. Экологические информационные системы
- •1. Какова область значения для числовых характеристик?
- •Лекция 17. Использование информационных технологий для решения задач экологии.
- •Специальные приложения.
- •Значение функции
- •Значение критерия
- •Значение критерия
- •Критические значения коэффициента корреляции rk;α
- •2. Основы теории подобия
- •2.1. Подобие физических явлений и его признаки
- •2.2. Анализ размерностей
- •2.3. Первая теорема подобия
- •2.4. Применение методов подобия в математическом
- •11.3. Численные методы решения дифференциальных уравнений
- •11.3.1. Постановка задачи
- •11.3.2. Процесс численного решения
- •11.3.3. Метод Эйлера
- •11.3.4. Модифицированный метод Эйлера
- •11.3.5. Метод Рунге – Кутта
- •11.3.6. Метод Рунге – Кутта для систем дифференциальных уравнений
- •11.3.7. Общая характеристика одношаговых методов
- •3.8. Многошаговые методы
- •11.3.9. Методы прогноза и коррекции
- •11.3.10. Краткая характеристика методов прогноза и коррекции.
- •11.3.11. Выбор шага и погрешность решения.
- •11.3.12. Жесткие задачи
- •11.4. Имитационное моделирование систем
- •11.4.1. Принципы имитационного моделирования
- •11.4.2. Объекты моделирования
- •11.4.3. Динамическая модель исследуемого объекта
- •11.4.4. Построение имитационных моделей динамических систем
- •11.4.5. Преобразование передаточных функций звеньев в дифференциальные уравнения в форме Коши
- •11.4.6. Синтез имитационной модели на основе структурной схемы
- •11.5. Теоретические основы построения математических моделей систем
- •11.5.1. Компонентные и топологические уравнения
- •11.5.2. Компонентные и топологические уравнения механической системы
- •11.5.3. Компонентные и топологические уравнения электрической системы
- •11.5.4. Компонентные и топологические уравнения гидравлической системы
- •11.5.5. Компонентные и топологические уравнения тепловой системы
- •11.6. Метод электроаналогий
- •11.6.1. Сущность метода электроаналогий.
- •11.6.2. Электромеханические аналогии
- •11.6.3. Построение имитационных моделей методом электроаналогий
- •11.6.4. Плоское прямолинейное движение звеньев
- •11.6.5. Электрогидравлические аналогии
- •11.6.6. Электротепловые аналогии
- •Литература
11.5.3. Компонентные и топологические уравнения электрической системы
В электрической системе потоковыми переменными являются токи I (А), а потенциальными переменными – напряжения или потенциалы U (В). Инерционными свойствами обладают катушки индуктивности. Компонентные уравнения инерционного элемента
где L – индуктивность (Гн).
Диссипативный элемент – резистор. Его компонентное уравнение получают на основе закона Ома:
Uд = R× iд,
где R – сопротивление (Ом).
Упругими свойствами характеризуется конденсатор. Компонентное уравнение упругого элемента:
где С - ёмкость (Ф).
Особенностью электрической системы, отличающей её от рассмотренной ранее механической системы, является то, что соединение элементов в электрических схемах образует структуру, в которой легко различаются ветви и узлы. Причем ветви представляют собой двухполюсные элементы – резисторы, конденсаторы, катушки индуктивности, источники энергии и др.
В этом случае топологические уравнения получают на основе законов Кирхгофа:
(5.6)
(5.7)
Уравнение (5.6) выражает первый закон Кирхгофа. Оно записывается для узлов электрической схемы и формулируется так: алгебраическая сумма токов для любого узла электрической схемы равна нулю. Так как ток – потоковая переменная, то первый закон Кирхгофа описывает баланс потоков в узле.
Уравнение (5.7) выражает второй закон Кирхгофа. Оно составляется для замкнутых контуров электрической схемы.
11.5.4. Компонентные и топологические уравнения гидравлической системы
В гидравлической системе потоковыми переменными являются расходы Q (м3/с), а потенциальными переменными – давления p (Н/м2 или Па).
Расход жидкости в трубопроводе Q выразим через скорость потока υ
где А – площадь поперечного сечения трубопровода. Введем обозначения:
где mг - коэффициент массы (кг/м4); V – объем жидкости в выделенном участке трубопровода длинной l: V=A×l; mж – масса жидкости в этом участке.
Компонентным уравнением инерционного элемента является уравнение Эйлера:
Компонентным уравнением диссипативного элемента является уравнение Навье - Стокса:
где µг - коэффициент гидравлического сопротивления (Н×с/м5).
Упругие свойства жидкости учитывает уравнение Гука:
где cг - коэффициент гидравлической жесткости (Н/м5); gГ = 1/cг - коэффициент гидравлической податливости (м5/Н); Qу – изменение расхода, обусловленное сжимаемостью жидкости. В выражении (5.8) учтено, что при возрастании давления происходит увеличение объемной деформации жидкости. Коэффициент c г определяется по формуле:
где E – модуль объемной упругости жидкости (Н/м2). Переменные pи, pу, pд представляют собой внутренние потенциалы исследуемой гидравлической системы, характеризующие взаимодействие выделенных дискретных элементов и определяющие потери давления источника на преодоление сил инерции жидкости и сообщения ей кинетической энергии, на деформацию жидкости и
изменение её потенциальной энергии, на преодоление сил внутреннего трения жидкости.
Коэффициенты mг, cг и µг - являются параметрами, соответственно, инерционных, упругих и диссипативных элементов гидравлической системы.
Топологические уравнения имеют вид:
Первое уравнение выражает условие равновесия потенциалов, действующих на сосредоточенные массы, а второе – условие непрерывности потоков жидкости.