
- •Конспект лекций
- •Владикавказ
- •Математическое моделирование элементов сложных экологических систем
- •Лекция 1. Введение в моделирование. Исторический экскурс.
- •1. Основы моделирования в экологии 1.1. Общие принципы построения моделей в экологии
- •Лекция 2.
- •2.1. Элементы моделирования
- •2.2. Этапы построения математической модели
- •1.4. Элементы теории подобия, применяемые в моделировании
- •Лекция 3
- •3.2. Экологические модели
- •3.2.1. Основы экологометрики
- •3.2.2. Выборочный метод в экологометрике.
- •Зависимость числа интервалов от объема выборки
- •Статистический ряд по интервалам
- •Лекция 4. Статистические оценки параметров распределения случайных величин по выборкам
- •4.4. Статистические оценки гипотез об экологических моделях
- •Определение вариантов выборок
- •Выборка из генеральной совокупности
- •Статистическая таблица
- •Лекция 5.
- •Результаты эксперимента
- •Статистическая таблица эксперимента
- •Пример преобразования членов уравнения регрессии
- •Вычисление данных для линеаризации уравнения регрессии
- •Нормальные уравнения мнк для некоторых функций
- •Статистическое оценивание уравнения регрессии и парной корреляции.
- •Обработка результатов наблюдений
- •Лекция 6.
- •Рекомендации по выбору вида функции
- •3.4. Динамические статистические модели
- •Посадка леса
- •Данные по объему сброса качественных сточных вод
- •Данные по объему сброса сточных вод за 5-летие
- •Пример расчета 5-летних средних
- •Условное обозначение времени
- •Расчетные значения для определения уравнения динамики
- •Ряд динамики для определения сезонных колебаний
- •Лекция 7. Многофакторные эколого-математические модели. Анализ влияния отдельных факторов в экологической модели.
- •Эксперименталъный материал исследования
- •Результаты проведенных опытов
- •8.1. Анализ влияния отдельных факторов в экологической модели.
- •Лекция 9. Методы оптимизации. Метод Лагранжа
- •Лекция 10. Метод линейного программирования.
- •Лекция 11. Функциональные модели.
- •Лекция 12. Модели процессов содержащие обыкновенные дифференциальные уравнения.
- •Численные ошибки использованных для вычисления данных
- •Лекция 13. Статистические модели динамики.
- •Лекция 14. Балансовые модели.
- •Лекция 15.
- •Лекция 16. Информационные технологии в экологии. Экологические информационные системы.
- •1 6.1. Экологические информационные системы
- •1. Какова область значения для числовых характеристик?
- •Лекция 17. Использование информационных технологий для решения задач экологии.
- •Специальные приложения.
- •Значение функции
- •Значение критерия
- •Значение критерия
- •Критические значения коэффициента корреляции rk;α
- •2. Основы теории подобия
- •2.1. Подобие физических явлений и его признаки
- •2.2. Анализ размерностей
- •2.3. Первая теорема подобия
- •2.4. Применение методов подобия в математическом
- •11.3. Численные методы решения дифференциальных уравнений
- •11.3.1. Постановка задачи
- •11.3.2. Процесс численного решения
- •11.3.3. Метод Эйлера
- •11.3.4. Модифицированный метод Эйлера
- •11.3.5. Метод Рунге – Кутта
- •11.3.6. Метод Рунге – Кутта для систем дифференциальных уравнений
- •11.3.7. Общая характеристика одношаговых методов
- •3.8. Многошаговые методы
- •11.3.9. Методы прогноза и коррекции
- •11.3.10. Краткая характеристика методов прогноза и коррекции.
- •11.3.11. Выбор шага и погрешность решения.
- •11.3.12. Жесткие задачи
- •11.4. Имитационное моделирование систем
- •11.4.1. Принципы имитационного моделирования
- •11.4.2. Объекты моделирования
- •11.4.3. Динамическая модель исследуемого объекта
- •11.4.4. Построение имитационных моделей динамических систем
- •11.4.5. Преобразование передаточных функций звеньев в дифференциальные уравнения в форме Коши
- •11.4.6. Синтез имитационной модели на основе структурной схемы
- •11.5. Теоретические основы построения математических моделей систем
- •11.5.1. Компонентные и топологические уравнения
- •11.5.2. Компонентные и топологические уравнения механической системы
- •11.5.3. Компонентные и топологические уравнения электрической системы
- •11.5.4. Компонентные и топологические уравнения гидравлической системы
- •11.5.5. Компонентные и топологические уравнения тепловой системы
- •11.6. Метод электроаналогий
- •11.6.1. Сущность метода электроаналогий.
- •11.6.2. Электромеханические аналогии
- •11.6.3. Построение имитационных моделей методом электроаналогий
- •11.6.4. Плоское прямолинейное движение звеньев
- •11.6.5. Электрогидравлические аналогии
- •11.6.6. Электротепловые аналогии
- •Литература
11.3.11. Выбор шага и погрешность решения.
Одним из важнейших практических вопросов, которые встают перед инженером, составляющим программы решения дифференциальных уравнений, является выбор подходящей величины шага. Если шаг слишком мал, то расчёт потребует неоправданно много машинного времени, а число ошибок на
отдельных шагах, складывающихся в суммарную ошибку, будет весьма велико. Если же наоборот - шаг выбран слишком большим, то значительной будет погрешность, обусловленная усечением рядов, и накопившаяся суммарная ошибка будет также недопустимо большой (рис.3.6).
Рис. 3.6. Выбор оптимального шага интегрирования
Кроме того, при больших значениях h возникает опасность появления цифровой неустойчивости решения. Важно различать между собой две меры погрешностей дискретизации [9],[10]:
а) локальная ошибка - это погрешность, вносимая в вычислительный процесс на каждом шаге вычислений.
б) глобальная ошибка - это разность между вычисленным и точным значениями величины на всем этапе реализации численного алгоритма, определяющая суммарную погрешность, накопившуюся с момента начала вычислений. Обычно, выбирая величину шага, стремятся, чтобы локальная ошибка на шаге была меньше некоторой заданной допустимой величины. Вообще говоря, если порядок точности метода Р, то локальная ошибка определяется выражением:
L(h) = c hp+1,
где c - некоторая постоянная; h - шаг интегрирования.
Указанное выражение с помощью θ-символики может быть записано более компактно:
L(h) = θ (hp+1).
Например, рассмотрим метод Эйлера:
Отсюда заключаем, что для метода Эйлера p =1, т.е. метод имеет первый порядок точности, а локальная ошибка определяется формулой:
L(h) = θ (h2 ).
Рассмотрим теперь глобальную ошибку дискретизации в конечной точке t=tN. По мере повышения требований к точности, длина шага h будет убывать, а общее из числа N, необходимое для достижения tN, будет возрастать:
Далее, глобальная ошибка E(h) может быть представлена как сумма N локальных ошибок и поэтому мы можем, округляя, записать:
E(h) = N θ(hp+1) = θ(hp ).
Для метода Эйлера p =1, так что уменьшение длины шага в 2 раза уменьшает среднюю локальную ошибку примерно в 2p+1 = 4 раза. Но так как для достижения tN теперь потребуется вдвое больше шагов, то глобальная ошибка ум-еньшится лишь в 2p = 2 раза. Если используется один из методов прогноза и коррекции, то ошибка на шаге определяется величиной последнего члена в формуле коррекции. При использовании же одношаговых методов Рунге-Ку-тта, локальную ошибку не удается выразить в явной форме. Один из методов оценки этой ошибки основан на двойном счете. Если для вычисления значения искомой функции yn+1 в точке tn+1 используется шаг h, то разность между истинным и вычисленным значениями на данном шаге равна:
Если уменьшим шаг
вдвое и выполнив два шага вычислим
в точке tn+1,
то получим:
(3.21)
Вычитая это выражение из предыдущего, найдем:
Отсюда можно найти локальную погрешность:
(3.22)
Данная формула называется правилом Рунге. Если ошибка на данном шаге слишком велика, то шаг делят пополам и вычисления повторяют вновь.
Запишем формулу (3.22) в виде:
Подставляя полученное выражение в (3.21) и полагая p=4, найдём приближенное значение ошибки на одном шаге:
(3.23)
Из (3.23) вытекает уточнённое решение:
Недостатком этого метода является то, что значение yn+1 приходится вычислять дважды, причем второй раз с помощью двух шагов. Тем не менее, эта процедура часто включается в вычислительный алгоритм для автоматического изменения шага в процессе вычислений и часто используется в методах Рунге - Кутта. Главное достоинство методов Рунге - Кутта - простота начала счета и возможность изменения величины шага в процессе вычисления. С
другой стороны, главным достоинством методов прогноза и коррекции является простота оценки ошибки на шаге.