
- •Конспект лекций
- •Владикавказ
- •Математическое моделирование элементов сложных экологических систем
- •Лекция 1. Введение в моделирование. Исторический экскурс.
- •1. Основы моделирования в экологии 1.1. Общие принципы построения моделей в экологии
- •Лекция 2.
- •2.1. Элементы моделирования
- •2.2. Этапы построения математической модели
- •1.4. Элементы теории подобия, применяемые в моделировании
- •Лекция 3
- •3.2. Экологические модели
- •3.2.1. Основы экологометрики
- •3.2.2. Выборочный метод в экологометрике.
- •Зависимость числа интервалов от объема выборки
- •Статистический ряд по интервалам
- •Лекция 4. Статистические оценки параметров распределения случайных величин по выборкам
- •4.4. Статистические оценки гипотез об экологических моделях
- •Определение вариантов выборок
- •Выборка из генеральной совокупности
- •Статистическая таблица
- •Лекция 5.
- •Результаты эксперимента
- •Статистическая таблица эксперимента
- •Пример преобразования членов уравнения регрессии
- •Вычисление данных для линеаризации уравнения регрессии
- •Нормальные уравнения мнк для некоторых функций
- •Статистическое оценивание уравнения регрессии и парной корреляции.
- •Обработка результатов наблюдений
- •Лекция 6.
- •Рекомендации по выбору вида функции
- •3.4. Динамические статистические модели
- •Посадка леса
- •Данные по объему сброса качественных сточных вод
- •Данные по объему сброса сточных вод за 5-летие
- •Пример расчета 5-летних средних
- •Условное обозначение времени
- •Расчетные значения для определения уравнения динамики
- •Ряд динамики для определения сезонных колебаний
- •Лекция 7. Многофакторные эколого-математические модели. Анализ влияния отдельных факторов в экологической модели.
- •Эксперименталъный материал исследования
- •Результаты проведенных опытов
- •8.1. Анализ влияния отдельных факторов в экологической модели.
- •Лекция 9. Методы оптимизации. Метод Лагранжа
- •Лекция 10. Метод линейного программирования.
- •Лекция 11. Функциональные модели.
- •Лекция 12. Модели процессов содержащие обыкновенные дифференциальные уравнения.
- •Численные ошибки использованных для вычисления данных
- •Лекция 13. Статистические модели динамики.
- •Лекция 14. Балансовые модели.
- •Лекция 15.
- •Лекция 16. Информационные технологии в экологии. Экологические информационные системы.
- •1 6.1. Экологические информационные системы
- •1. Какова область значения для числовых характеристик?
- •Лекция 17. Использование информационных технологий для решения задач экологии.
- •Специальные приложения.
- •Значение функции
- •Значение критерия
- •Значение критерия
- •Критические значения коэффициента корреляции rk;α
- •2. Основы теории подобия
- •2.1. Подобие физических явлений и его признаки
- •2.2. Анализ размерностей
- •2.3. Первая теорема подобия
- •2.4. Применение методов подобия в математическом
- •11.3. Численные методы решения дифференциальных уравнений
- •11.3.1. Постановка задачи
- •11.3.2. Процесс численного решения
- •11.3.3. Метод Эйлера
- •11.3.4. Модифицированный метод Эйлера
- •11.3.5. Метод Рунге – Кутта
- •11.3.6. Метод Рунге – Кутта для систем дифференциальных уравнений
- •11.3.7. Общая характеристика одношаговых методов
- •3.8. Многошаговые методы
- •11.3.9. Методы прогноза и коррекции
- •11.3.10. Краткая характеристика методов прогноза и коррекции.
- •11.3.11. Выбор шага и погрешность решения.
- •11.3.12. Жесткие задачи
- •11.4. Имитационное моделирование систем
- •11.4.1. Принципы имитационного моделирования
- •11.4.2. Объекты моделирования
- •11.4.3. Динамическая модель исследуемого объекта
- •11.4.4. Построение имитационных моделей динамических систем
- •11.4.5. Преобразование передаточных функций звеньев в дифференциальные уравнения в форме Коши
- •11.4.6. Синтез имитационной модели на основе структурной схемы
- •11.5. Теоретические основы построения математических моделей систем
- •11.5.1. Компонентные и топологические уравнения
- •11.5.2. Компонентные и топологические уравнения механической системы
- •11.5.3. Компонентные и топологические уравнения электрической системы
- •11.5.4. Компонентные и топологические уравнения гидравлической системы
- •11.5.5. Компонентные и топологические уравнения тепловой системы
- •11.6. Метод электроаналогий
- •11.6.1. Сущность метода электроаналогий.
- •11.6.2. Электромеханические аналогии
- •11.6.3. Построение имитационных моделей методом электроаналогий
- •11.6.4. Плоское прямолинейное движение звеньев
- •11.6.5. Электрогидравлические аналогии
- •11.6.6. Электротепловые аналогии
- •Литература
11.3.7. Общая характеристика одношаговых методов
Всем одношаговым методам присущи определенные общие черты:
1) чтобы получить информацию в новой точке, надо иметь данные лишь в одной предыдущей точке. Поэтому одношаговые методы называют «самостартующимися»;
2) в основе всех одношаговых методов лежит разложение функции в ряд Тейлора, в котором сохраняются члены, содержащие h в степени до k включительно. Целое число k называется порядком метода;
3) все одношаговые методы не требуют действительного вычисления производных, а вычисляется лишь сама функция в одной или нескольких промежуточных точках;
4) свойство «самостартования» позволяет легко менять величину шага.
3.8. Многошаговые методы
Вернемся к задаче Коши
y’ = f(t, y); y(0) = y0. (3.13)
В предыдущих методах значение yn + 1 зависело только от информации в пре-дыдущей точке tn. Кажется вполне вероятным, что можно добиться большей точности, если использовать информацию о нескольких предыдущих точках tn, tn - 1,…. Именно так и поступают в многошаговых методах [4].
Если проинтегрировать уравнение (3.13) на отрезке [tn, tn+1], то получим
или
где P(t) – полином, аппроксимирующий f(t, y).
Чтобы построить полином степени N, используем предыдущие решения yn, yn – 1, …. в точках tn,…, tn-1, …, tn - N, ... . Мы по-прежнему считаем, что узлы t расположены равномерно с шагом h. В принципе, можно проинтегрировать этот полином явно, что ведет к следующему методу:
(3.14)
В простейшем случае, когда N = 0, полином P – есть константа, равная fn, и (3.14) превращается в обычный метод Эйлера.
Если N = 1, то P – есть линейная функция, проходящая через
точки (tn-1, fn -1) и (tn, fn) , т. е.
Интегрируя этот полином от tn до tn - 1, получаем следующий метод:
(3.15)
который является двухшаговым, поскольку использует информацию в двух точках - tn и tn - 1. Аналогично, если N = 2 , то P есть квадратичный полином, интерполирующий данные (tn-2 , fn-2 ), (tn-1 , fn-1), (tn , fn), а соответствующий метод имеет вид
(3.16)
Если N = 3, то интерполяционный полином является кубическим, а соответствующий метод определяется формулой
(3.17)
Отметим, что метод (3.16) является трехшаговым, а (3.17) – четырехшаговым. Формулы (3.15) – (3.17) известны как методы Адамса –Башфорта. Метод (3.15) имеет второй порядок точности, поэтому его называют методом Адамса – Башфорта второго порядка. Аналогично, методы (3.16) и (3.17) называют соответственно методами Адамса – Башфорта третьего и четвертого порядков.
Этот процесс, в принципе, можно бы продолжить, используя все большее число предыдущих точек, а следовательно, и интерполяционный полином P более высокой степени, и получить Адамса – Башфорта сколь угодно высокого порядка. Однако точность вычислений с увеличением порядка возрастает нелинейно. Чем дальше отстоит предыдущая точка от текущей точки, тем слабее она влияет на точность. Многошаговые методы порождают проблему, которая не возникала при использовании одношаговых методов. Так как в
рассматриваемых методах используется информация о нескольких ранее полученных точках, то в отличие от одношаговых методов они не обладают свойством "самостартования". Поэтому прежде чем применять многошаговый метод, приходится вычислять исходные данные с помощью какого-либо одношагового метода. Часто для этого прибегают к методу Рунге - Кутта.