
- •Конспект лекций
- •Владикавказ
- •Математическое моделирование элементов сложных экологических систем
- •Лекция 1. Введение в моделирование. Исторический экскурс.
- •1. Основы моделирования в экологии 1.1. Общие принципы построения моделей в экологии
- •Лекция 2.
- •2.1. Элементы моделирования
- •2.2. Этапы построения математической модели
- •1.4. Элементы теории подобия, применяемые в моделировании
- •Лекция 3
- •3.2. Экологические модели
- •3.2.1. Основы экологометрики
- •3.2.2. Выборочный метод в экологометрике.
- •Зависимость числа интервалов от объема выборки
- •Статистический ряд по интервалам
- •Лекция 4. Статистические оценки параметров распределения случайных величин по выборкам
- •4.4. Статистические оценки гипотез об экологических моделях
- •Определение вариантов выборок
- •Выборка из генеральной совокупности
- •Статистическая таблица
- •Лекция 5.
- •Результаты эксперимента
- •Статистическая таблица эксперимента
- •Пример преобразования членов уравнения регрессии
- •Вычисление данных для линеаризации уравнения регрессии
- •Нормальные уравнения мнк для некоторых функций
- •Статистическое оценивание уравнения регрессии и парной корреляции.
- •Обработка результатов наблюдений
- •Лекция 6.
- •Рекомендации по выбору вида функции
- •3.4. Динамические статистические модели
- •Посадка леса
- •Данные по объему сброса качественных сточных вод
- •Данные по объему сброса сточных вод за 5-летие
- •Пример расчета 5-летних средних
- •Условное обозначение времени
- •Расчетные значения для определения уравнения динамики
- •Ряд динамики для определения сезонных колебаний
- •Лекция 7. Многофакторные эколого-математические модели. Анализ влияния отдельных факторов в экологической модели.
- •Эксперименталъный материал исследования
- •Результаты проведенных опытов
- •8.1. Анализ влияния отдельных факторов в экологической модели.
- •Лекция 9. Методы оптимизации. Метод Лагранжа
- •Лекция 10. Метод линейного программирования.
- •Лекция 11. Функциональные модели.
- •Лекция 12. Модели процессов содержащие обыкновенные дифференциальные уравнения.
- •Численные ошибки использованных для вычисления данных
- •Лекция 13. Статистические модели динамики.
- •Лекция 14. Балансовые модели.
- •Лекция 15.
- •Лекция 16. Информационные технологии в экологии. Экологические информационные системы.
- •1 6.1. Экологические информационные системы
- •1. Какова область значения для числовых характеристик?
- •Лекция 17. Использование информационных технологий для решения задач экологии.
- •Специальные приложения.
- •Значение функции
- •Значение критерия
- •Значение критерия
- •Критические значения коэффициента корреляции rk;α
- •2. Основы теории подобия
- •2.1. Подобие физических явлений и его признаки
- •2.2. Анализ размерностей
- •2.3. Первая теорема подобия
- •2.4. Применение методов подобия в математическом
- •11.3. Численные методы решения дифференциальных уравнений
- •11.3.1. Постановка задачи
- •11.3.2. Процесс численного решения
- •11.3.3. Метод Эйлера
- •11.3.4. Модифицированный метод Эйлера
- •11.3.5. Метод Рунге – Кутта
- •11.3.6. Метод Рунге – Кутта для систем дифференциальных уравнений
- •11.3.7. Общая характеристика одношаговых методов
- •3.8. Многошаговые методы
- •11.3.9. Методы прогноза и коррекции
- •11.3.10. Краткая характеристика методов прогноза и коррекции.
- •11.3.11. Выбор шага и погрешность решения.
- •11.3.12. Жесткие задачи
- •11.4. Имитационное моделирование систем
- •11.4.1. Принципы имитационного моделирования
- •11.4.2. Объекты моделирования
- •11.4.3. Динамическая модель исследуемого объекта
- •11.4.4. Построение имитационных моделей динамических систем
- •11.4.5. Преобразование передаточных функций звеньев в дифференциальные уравнения в форме Коши
- •11.4.6. Синтез имитационной модели на основе структурной схемы
- •11.5. Теоретические основы построения математических моделей систем
- •11.5.1. Компонентные и топологические уравнения
- •11.5.2. Компонентные и топологические уравнения механической системы
- •11.5.3. Компонентные и топологические уравнения электрической системы
- •11.5.4. Компонентные и топологические уравнения гидравлической системы
- •11.5.5. Компонентные и топологические уравнения тепловой системы
- •11.6. Метод электроаналогий
- •11.6.1. Сущность метода электроаналогий.
- •11.6.2. Электромеханические аналогии
- •11.6.3. Построение имитационных моделей методом электроаналогий
- •11.6.4. Плоское прямолинейное движение звеньев
- •11.6.5. Электрогидравлические аналогии
- •11.6.6. Электротепловые аналогии
- •Литература
11.3.5. Метод Рунге – Кутта
Пусть требуется найти решение дифференциального уравнения
y’ = f (t, y),
удовлетворяющее начальному условию
y’(t0) = y0.
Принцип, на котором основан метод Рунге – Кутта, можно пояснить, как и принцип, на котором основан метод Эйлера, с помощью разложения функции в ряд Тейлора
Чтобы удержать в ряде Тейлора член n-го порядка, необходимо вычислить n-ю производную зависимой переменной. При использовании модифицированного метода Эйлера для получения второй производной в конечно-разност-ной форме достаточно было знать наклон кривой на концах рассматриваемого интервала. Чтобы вычислить третью производную в конечно-разностном виде, необходимо иметь значения второй производной, по меньшей мере, в двух точках. Для этого необходимо дополнительно определить наклон кривой в некоторой промежуточной точке интервала h, т. е. между tn и n 1 t + . Очевидно, чем выше порядок вычисляяемой производной, тем больше дополнительных точек потребуется вычислить внутри интервала. Так как существует несколько способов расположения внутренних точек и выбора относительных весов для найденных производных, то метод Рунге – Кутта, в сущности, объединяет целое семейство методов решения дифференциальных уравнений.
Наиболее распространенным из них является метод четвёртого порядка точности, при котором удерживаются все члены ряда Тейлора, включая h4. Расчеты при использовании этого классического метода производятся по формулам:
где
Метод Эйлера и его модификация по сути дела являются методами Рунге – Кутта первого и второго порядка соответственно. Более высокая точность метода Рунге – Кутта позволяет увеличить шаг интегрирования h. Допустимая погрешность на шаге определяет его максимальную величину. В прикладных пакетах программ выбор шага часто осуществляется автоматически. Для этого проводят вычисления сначала с шагом h, а затем – с шагом h/2.
За оценку погрешности вычислений с шагом h/2 можно принять приближенную формулу
где
- вычисленное значение с шагом h/2;
yn
– вычисленное
значение с шагом h.
Пример: y’
= xy.
Решение:
При реализации методов Рунге – Кутта на ЭВМ для каждой точки проводят двойной счет. Если полученные при этом значения удовлетворяют выражению (5.4), то для точки t n+1 шаг удваивают, в противном случае уменьшают вдвое. Однако необходимо помнить, что выражение (5.4) приближенное и при неблагоприятных условиях можно получить совершенно ошибочные результаты, хотя в большинстве случаев дело обстоит благополучно.
11.3.6. Метод Рунге – Кутта для систем дифференциальных уравнений
Формулы Рунге - Кутта можно использовать для решения систем дифференциальных уравнений и, следовательно, для решения дифференциальных уравнений более высоких порядков, так как любое дифференциальное уравнение n-го порядка можно свести к n дифференциальным уравнениям первого порядка. Например, в дифференциальном уравнении второго порядка
можно принять
тогда
и получаем два уравнения первого порядка:
Задача Коши в этом случае содержит два начальных условия
y(t0) = y0 и z(t0) = z0.
Формулы Рунге – Кутта для рассматриваемого случая имеют
вид:
где