
- •Конспект лекций
- •Владикавказ
- •Математическое моделирование элементов сложных экологических систем
- •Лекция 1. Введение в моделирование. Исторический экскурс.
- •1. Основы моделирования в экологии 1.1. Общие принципы построения моделей в экологии
- •Лекция 2.
- •2.1. Элементы моделирования
- •2.2. Этапы построения математической модели
- •1.4. Элементы теории подобия, применяемые в моделировании
- •Лекция 3
- •3.2. Экологические модели
- •3.2.1. Основы экологометрики
- •3.2.2. Выборочный метод в экологометрике.
- •Зависимость числа интервалов от объема выборки
- •Статистический ряд по интервалам
- •Лекция 4. Статистические оценки параметров распределения случайных величин по выборкам
- •4.4. Статистические оценки гипотез об экологических моделях
- •Определение вариантов выборок
- •Выборка из генеральной совокупности
- •Статистическая таблица
- •Лекция 5.
- •Результаты эксперимента
- •Статистическая таблица эксперимента
- •Пример преобразования членов уравнения регрессии
- •Вычисление данных для линеаризации уравнения регрессии
- •Нормальные уравнения мнк для некоторых функций
- •Статистическое оценивание уравнения регрессии и парной корреляции.
- •Обработка результатов наблюдений
- •Лекция 6.
- •Рекомендации по выбору вида функции
- •3.4. Динамические статистические модели
- •Посадка леса
- •Данные по объему сброса качественных сточных вод
- •Данные по объему сброса сточных вод за 5-летие
- •Пример расчета 5-летних средних
- •Условное обозначение времени
- •Расчетные значения для определения уравнения динамики
- •Ряд динамики для определения сезонных колебаний
- •Лекция 7. Многофакторные эколого-математические модели. Анализ влияния отдельных факторов в экологической модели.
- •Эксперименталъный материал исследования
- •Результаты проведенных опытов
- •8.1. Анализ влияния отдельных факторов в экологической модели.
- •Лекция 9. Методы оптимизации. Метод Лагранжа
- •Лекция 10. Метод линейного программирования.
- •Лекция 11. Функциональные модели.
- •Лекция 12. Модели процессов содержащие обыкновенные дифференциальные уравнения.
- •Численные ошибки использованных для вычисления данных
- •Лекция 13. Статистические модели динамики.
- •Лекция 14. Балансовые модели.
- •Лекция 15.
- •Лекция 16. Информационные технологии в экологии. Экологические информационные системы.
- •1 6.1. Экологические информационные системы
- •1. Какова область значения для числовых характеристик?
- •Лекция 17. Использование информационных технологий для решения задач экологии.
- •Специальные приложения.
- •Значение функции
- •Значение критерия
- •Значение критерия
- •Критические значения коэффициента корреляции rk;α
- •2. Основы теории подобия
- •2.1. Подобие физических явлений и его признаки
- •2.2. Анализ размерностей
- •2.3. Первая теорема подобия
- •2.4. Применение методов подобия в математическом
- •11.3. Численные методы решения дифференциальных уравнений
- •11.3.1. Постановка задачи
- •11.3.2. Процесс численного решения
- •11.3.3. Метод Эйлера
- •11.3.4. Модифицированный метод Эйлера
- •11.3.5. Метод Рунге – Кутта
- •11.3.6. Метод Рунге – Кутта для систем дифференциальных уравнений
- •11.3.7. Общая характеристика одношаговых методов
- •3.8. Многошаговые методы
- •11.3.9. Методы прогноза и коррекции
- •11.3.10. Краткая характеристика методов прогноза и коррекции.
- •11.3.11. Выбор шага и погрешность решения.
- •11.3.12. Жесткие задачи
- •11.4. Имитационное моделирование систем
- •11.4.1. Принципы имитационного моделирования
- •11.4.2. Объекты моделирования
- •11.4.3. Динамическая модель исследуемого объекта
- •11.4.4. Построение имитационных моделей динамических систем
- •11.4.5. Преобразование передаточных функций звеньев в дифференциальные уравнения в форме Коши
- •11.4.6. Синтез имитационной модели на основе структурной схемы
- •11.5. Теоретические основы построения математических моделей систем
- •11.5.1. Компонентные и топологические уравнения
- •11.5.2. Компонентные и топологические уравнения механической системы
- •11.5.3. Компонентные и топологические уравнения электрической системы
- •11.5.4. Компонентные и топологические уравнения гидравлической системы
- •11.5.5. Компонентные и топологические уравнения тепловой системы
- •11.6. Метод электроаналогий
- •11.6.1. Сущность метода электроаналогий.
- •11.6.2. Электромеханические аналогии
- •11.6.3. Построение имитационных моделей методом электроаналогий
- •11.6.4. Плоское прямолинейное движение звеньев
- •11.6.5. Электрогидравлические аналогии
- •11.6.6. Электротепловые аналогии
- •Литература
11.3. Численные методы решения дифференциальных уравнений
11.3.1. Постановка задачи
Дифференциальными называются уравнения, содержащие одну или несколько производных. Инженеру очень часто приходится сталкиваться с ними при разработке новых изделий или технологических процессов, так как большая часть законов физики формулируется именно в виде дифференциальных равнений. Любая задача проектирования, связанная с расчетом потоков энергии или движением тел, в конечном счете, сводится к решению дифференциальных уравнений. Лишь очень немногие из них удается решить без помощи вычислительных машин. Поэтому численные методы решения дифференциальных уравнений играют такую важную роль в практике инженерных расчетов и в моделировании.
Так при реализации цифровых систем управления инженеру-системотех-нику приходится решать дифференциальные уравнения в реальном масштабе времени, т.е. непосредственно в процессе управления объектом. Примером могут служить цифровые регуляторы в системах управления электроприводами металлорежущих станков и промышленных роботов, а также цифровые системы управления автомобильными и авиационными двигателями, летательными аппаратами, морскими судами и т.д.
Рис. 11.3.1. Решения дифференциального уравнения
Известные математические программы – MathCAD, Matlab, Mathematica и др. непригодны для решения таких задач. Эти программы занимают в ЭВМ много памяти и, кроме того, они не могут работать в реальном масштабе времени. Поэтому для построения компактных, работающих в реальном времени цифровых моделей и систем инженеру приходится самостоятельно разрабатывать алгоритмы и программы для решения дифференциальных уравнений тем или иным численным методом.
В зависимости от числа независимых переменных и, следовательно, типа входящих в них производных дифференциальные уравнения делятся на две различные категории:
обыкновенные, содержащие одну независимую переменную и производные по ней, и уравнения в частных производных, содержащие несколько независимых переменных и производные по ним, которые называют частными.
Рассмотрим методы решения обыкновенных дифференциальных уравнений (ОДУ). Дифференциальное уравнение первого порядка можно записать в виде
y' = f(y,t).
Это уравнение имеет семейство решений y(t) . Например, если f(y,t) = y , то для произвольной константы С функция y(t) = Cet является решением (рис.3.1). Выбор начального значения, скажем y(0) , служит для выделения одной кривой из семейства кривых. Зачастую имеется более чем одна зависимая переменная, и тогда задача заключается в решении системы уравнений первого порядка, например,
Решение этой системы содержит две постоянные интегрирования, и, следовательно, нужны два начальных условия, чтобы определить эти константы.
Если значения y и z указаны при одном и том же значении независимой переменной t0, то система будет иметь единственное решение. Задача определения y и z для будущих значений t > t0 называется задачей с начальными условиями или задачей Коши. Если же условия задаются при двух или более значениях независимой переменной, то задача называется краевой. В задаче Коши дополнительные условия называют начальными, а в краевой задаче – граничными.
Любое обыкновенное дифференциальное уравнение порядка n, которое можно записать так, что его левая часть есть производная наивысшего порядка, а в правой части эта производная не встречается, может быть записана из n уравнений первого порядка путем введения n-1 новых переменных.
Например, уравнение
u'' = g(u,u' t)
можно записать как систему
где z'(t) = u''(t).
При обсуждении методов для задачи Коши удобно представлять
себе единственное уравнение
y '= f(y,t)
с начальным условием y(t0 ) = y0. Однако методы с равным успехом применимы и к системам уравнений. Часто в задаче Коши в роли независимой переменной выступает время.
Рис 3.2. К задаче о траектории
Пример 3.1
Примером может служить задача о траектории. Предположим, что снаряд выпускается с начальной скоростью V0 под заданным углом наклона Q0 к поверхности.
Как видно из рис.
3.2 функции x(t)
и y(t)
обозначают координаты x
и у
снаряда в
момент времени t,
а функции
и
определяют его скоростьV
(t
) .
Расстояние xk , на котором упадет снаряд, зависит от целого ряда факторов: массы снаряда, начальной скорости, гравитационных сил и т.д.
Математическая модель этой задачи выводится из второго закона Ньютона:
(3.1)
где m - масса снаряда; F - результирующая действующих на снаряд сил.
На снаряд действуют две силы:
1) cила сопротивления воздуха
(3.2)
где C - коэффициент сопротивления; ρ - плотность воздуха; S - поперечное сечение снаряда;
2) сила гравитации
F2 = -mg, (3.3)
где g - ускорение свободного падения.
Чтобы записать уравнение (3.1) в переменных x и y , заметим, что сила сопротивления F1 действует вдоль оси снаряда, а сила гравитации F2 только в вертикальном направлении. Поэтому уравнение (3.1) можно записать покоординатно следующим образом:
(3.4)
Используя (3.2), (3.3) и меняя порядок членов, перепишем
уравнения (3.4) в виде:
(3.5)
Для численного решения необходимо преобразовать два уравнения второго порядка (3.5) в систему четырех уравнений первого порядка. Дифференцируя соотношение
(3.6)
Имеем
(3.7)
Подставляя теперь
выражения (3.7) в уравнение (3.5) и разрешая
последние относительно
и
,
получаем
(3.8)
Уравнения (3.6) вместе с (3.8) составляют систему четырех нелинейных уравнений первого порядка относительно функций x, y,V, θ. Это связанная система нелинейных дифференциальных уравнений, явное решение которых невозможно и возникает необходимость в приближенном численном решении на ЭВМ. Решение системы (3.6), (3.8) должно удовлетворять четырем необходимым начальным условиям.
Считаем, что снаряд выпускается в момент времени t = 0, так что
(x0) = 0,
(y0) = 0.
Другие два начальных условия даются соотношениями
Следовательно, в данном случае рассматривается задача Коши. При заданных характеристиках снаряда и заданном V0 имеется только один свободный параметр – угол стрельбы Q0. Его изменение будет, очевидно, приводить к изменению траектории.