Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математическое моделирование в экологии.doc
Скачиваний:
571
Добавлен:
13.04.2015
Размер:
8.46 Mб
Скачать

Лекция 1. Введение в моделирование. Исторический экскурс.

Введение

Моделирование стало применяться еще в глубокой древности и постепенно проникло во все области человеческих знаний. Большие успехи и признание моделированию принес ХХ век, когда универсальный метод научного познания стал одним из главных методов, используемых в научных и практических исследованиях. Большой интерес к изучению экологических процессов, вызванный в последнее десятилетие ухудшающимся состоянием окружаю- щей среды, побудил исследователей к применению математического моделирования. По мере усложнения экологических явлений моделирование все чаще производится с помощью современных вычислительных систем, реализуемых на базе компьютерных технологий, построенных с применением математики и логических умозаключений.

Математическая модель в отличие от реального физического эксперимента имеет ряд неоспоримых преимуществ, которые связаны с тремя основными особенностями:

• во-первых, это экономия материальных ресурсов, требуемых для постановки и проведения физического эксперимента;

• во-вторых, возможность апробации модели экологической системы в изменяющихся по воле экспериментатора условиях;

• в-третьих, оценка работоспособности системы с длительным жизненным циклом в существенно сжатые сроки.

Принципиально можно выделить несколько уровней моделирования в экологии в зависимости от исследуемого объекта — микро- уровень (исследования экологического процесса на уровне небольшого региона), макроуровень (на уровне значительного географического района) и мегауровень (на уровне всей планеты). Важной проблемой моделирования является задача обеспечения точности решения, получаемого с помощью модели. К сожалению, не всегда удается построить модель, которая бы удовлетворяла заданной точности и была бы при этом достаточно простой. Сегодня еще часто применяют метод проб и ошибок при подгонке тех или иных моделей под реальный процесс. Построение моделей в этих случаях требует дополнительных, достаточно сложных натурных физических экспериментов, и этот процесс в моделировании принято называть как решение прямой задачи. Современная теория моделирования дает специалистам возможность повысить эффективность модели в обратной задаче: когда строятся приближенные модели экологических процессов, а некоторые пара- метры, входящие в математические выражения, принимаются с большими допущениями, и их можно рассматривать как неизвестные для выбранных конкретных задач.

Для определения неизвестных может быть использована кос- венная информация: данные о решении уравнений, которые экспериментально получить значительно проще. Обратные задачи формулируются на начальной стадии моделирования совместными усилиями группы специалистов в разных направлениях экологической науки. В этом случае можно обеспечить получение информации об исследуемом объекте.

В отличие от задач прямого моделирования обратные задачи относятся к классу «некорректных» (в математическом смысле), в частности, неустойчивых относительно погрешности входных данных. Однако современное моделирование обладает средствами для их решения, что существенно расширяет возможности применения математического моделирования в экологии.

Трудности практического применения моделирования в экологии связаны с наполнением содержания моделей конкретной и качественной информацией. С одной стороны, точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных экологических моделей, с другой — исследования по моделированию экологических объектов выдвигают новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моде- лей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на два вида:

• первый — о прошлом развитии и современном состоянии ис- следуемого экологического объекта;

• второй — о его будущем состоянии и развитии, включая данные об ожидаемых изменениях их внутренних параметров и внешних условий.

Этот вид информации — результат самостоятельных исследований, которые также могут выполняться посредством моделирования. В экологии многие процессы являются массовыми, они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в экологии опирается на изучение массовых явлений с широким применением статистических методов. В то же время экологические процессы характеризуются динамичностью, при этом изменяются как отдельные характеристики процессов, так и их внутренняя структура. Это вызывает необходимость использования информации, получаемой в результате мониторинга за состоянием окружающей среды и ее отдельными процессами. Такая информация должна обладать определенной точностью, что связано с проблемой выбора экологических показателей, которые можно было бы использовать в моделировании и получать результаты, пригодные для оценки тех или иных реальных объектов, выбранных в качестве объектов исследования.