- •Введение
- •1. Металлы и сплавы
- •1.1. Кристаллическое строение металлов
- •Кристаллизация металлов
- •1.2. Требования к металлам
- •Усталостные испытания
- •1.3. Производство чугуна и стали
- •Производство чугуна
- •Производство стали
- •1.4. Разливка стали
- •1.5. Диаграмма состояния системы железо–углерод
- •1.6. Влияние химических элементов на свойства сталей и чугунов
- •1.7. Углеродистые и легированные стали
- •Легированные стали
- •Арматурные стали
- •1.8. Термическая обработка стали
- •Закалка сталей
- •1.9. Прокатка металлов
- •Сортамент проката:
- •Технология изготовления бесшовных труб
- •1.10. Защита металлов от коррозии
- •2. Сварка металлов
- •2.1. Общие вопросы сварки
- •2.2. Тепловые процессы при сварке
- •2.3. Свариваемость металлов
- •2.4. Деформации при сварке
- •2.5. Основы электродуговой сварки и наплавки
- •2.6. Ручная электродуговая сварка и наплавка
- •2.7. Особенности сварки чугуна и алюминия
- •2.8. Механизированная наплавка и сварка
- •2.9. Плазменная сварка и наплавка
- •2.10. Контактная электрическая сварка
- •2.11. Металлизация
- •2.12. Пайка и заливка металлов
- •2.13. Газовая сварка и наплавка
- •Технология газовой сварки
- •2.14. Резка металлов
- •2.15. Сварка стальных строительных конструкций
- •Сварка стальных трубопроводов
- •Сварка арматуры
- •2.16. Контроль качества сварки
- •Методы контроля с разрушением сварного соединения
- •Список литературы
- •Николай Васильевич Храмцов металлы и сварка
- •625000, Г. Тюмень, ул. Семакова, 10.
2.11. Металлизация
Металлизация — это процесс нанесения мелких частиц металла, нагретого каким-либо способом до расплавления, распыленных газом, на поверхность детали.Металлизация в основном используется для декоративных целей, для заделки трещин и пор в корпусных деталях и реже — для восстановления деталей. Процесс является высокопроизводительным и экономичным, позволяет наносить покрытия от долей миллиметра и до нескольких миллиметров, не вызывает тепловых деформаций (деталь нагревается не свыше 200° С).
Проволока (рис. 2.43) или порошок непрерывно подается в зону нагрева, где расплавляется, подхватывается и распыляется струей инертного газа или воздуха на частицы размером от 3 до 300 мкм, которые со скоростью 150–300 м/сек ударяются в специально подготовленную (рваная резьба, канавки, пескоструйная обработка, анодно-механическая обработка и др.) поверхность детали, где расплющиваются и заклиниваются в неровностях поверхности с образованием молекулярных связей. Величина молекулярных связей между частицами больше, чем между частицами и деталью, поэтому слабым участком является недостаточное сцепление покрытия с деталью. При полете частица окисляется и закаляется, вследствие этого покрытие имеет большую твердость и хрупкость. Из-за этого, а также из-за особой подготовки поверхности к металлизации покрытие, имея хорошую износостойкость (поры пропитываются маслом, а поверхность имеет высокую твердость), не может работать в условиях знакопеременных нагрузок. Для сравнения: усталостная прочность покрытия, нанесенного металлизацией, в 15–20 раз ниже, чем у электролитических покрытий. Использование некоторых дополнительных приемов (плазменный нагрев поверхности до температуры сплавления металла и частиц, шовная электроконтактная сварка…) дает возможность применять металлизацию в производстве.

Металлизация в зависимости от способа расплавления металла разделяется на газовую, электродуговую, высокочастотную и плазменную.
При электродуговой металлизации (рис. 2.43) две изолированные проволоки подаются с одинаковой скоростью, между ними возбуждается электрическая дуга, металл плавится, газ распыляет металл и подает частицы металла к детали.
При газовой металлизации (рис. 2.44) чаще всего используется ацетилено-кислородное пламя, которое расплавляет сварочную проволоку, а сжатый воздух или инертный газ распыляет и наносит частицы на поверхность. При газовой металлизации распыл получается мельче, но оборудование сложнее, чем при электродуговой металлизации.

Электродуговая металлизация — это высокопроизводительный процесс, однако разбрызгивание металла составляет до 40–60 %.
Нагрев и расплавление проволоки при индуктивной металлизации выполняются индуктивным нагревом ее токами высокой частоты (200–300 кГц). При плазменной металлизации, по сравнению с электродуговым процессом, увеличивается производительность, уменьшаются затраты электроэнергии и угар металла, появляется возможность напыления износостойких тугоплавких материалов (окись алюминия, карбиды и др.), возможность нанесения покрытия на большинство материалов и даже на неметаллы. Металлизация может производится порошком или проволокой. При наплавке порошком используется комбинированная дуга, а при наплавке проволокой — различные схемы, в том числе анодом может быть проволока.
