Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
132
Добавлен:
12.04.2015
Размер:
7.4 Mб
Скачать

2. Исследование функции на четность и нечетность.

Функция называется четной (нечетной), если для любогои выполняется равенство

.

График четной функции симметричен относительно оси .

График нечетной функции симметричен относительно начала координат.

Пример 6.2. Исследовать на четность или нечетность функции

1) ; 2); 3).

Решение.

1) Функция определена при . Найдем.

, т.е. . Значит, данная функция является четной.

2) Функция определена при

, т.е. . Таким образом, данная функция нечетная.

3) функция определена для , т.е. для

, . Поэтому функция не является ни четной, ни нечетной. Назовем ее функцией общего вида.

3. Исследование функции на монотонность.

Функция называется возрастающей (убывающей) на некотором интервале, если в этом интервале каждому большему значению аргумента соответствует большее (меньшее) значение функции.

Функции возрастающие (убывающие) на некотором интервале называются монотонными.

Если функция дифференцируема на интервалеи имеет положительную (отрицательную) производную, то функциявозрастает (убывает) на этом интервале.

Пример 6.3. Найти интервалы монотонности функций

1) ; 3).

Решение.

1) Данная функция определена на всей числовой оси. Найдем производную .

Производная равна нулю, если и. Область определения – числовая ось, разбивается точками,на интервалы. Определим знак производной в каждом интервале.

В интервале производная отрицательна, функция на этом интервале убывает.

В интервале производная положительна, следовательно, функция на этом интервале возрастает.

2) Данная функция определена, если или

.

Определяем знак квадратного трехчлена в каждом интервале.

Таким образом, область определения функции

.

Найдем производную ,, если, т.е., но. Определим знак производной в интервалах.

В интервале производная отрицательна, следовательно, функция убывает на интервале. В интервалепроизводная положительна, функция возрастает на интервале.

4. Исследование функции на экстремум.

Точка называется точкой максимума (минимума) функции, если существует такая окрестность точки, что для всехиз этой окрестности выполняется неравенство.

Точки максимума и минимума функции называются точками экстремума.

Если функция в точкеимеет экстремум, то производная функции в этой точке равна нулю или не существует (необходимое условие существования экстремума).

Точки, в которых производная равна нулю или не существует называются критическими.

5. Достаточные условия существования экстремума.

Правило 1. Если при переходе (слева направо) через критическую точку производнаяменяет знак с «+» на «–», то в точкефункцияимеет максимум; если с «–» на «+», то минимум; еслине меняет знак, то экстремума нет.

Правило 2. Пусть в точке первая производная функцииравна нулю, а вторая производная существует и отлична от нуля. Если, то– точка максимума, если, то– точка минимума функции.

Пример 6.4. Исследовать на максимум и минимум функции:

1) ; 2); 3);

4) .

Решение.

1) Функция определена и непрерывна на интервале .

Найдем производную и решим уравнение, т.е..Отсюда– критические точки.

Определим знак производной в интервалах ,.

При переходе через точки ипроизводная меняет знак с «–» на «+», поэтому по правилу 1– точки минимума.

При переходе через точку производная меняет знак с «+» на «–», поэтому– точка максимума.

, .

2) Функция определена и непрерывна в интервале . Найдем производную.

Решив уравнение , найдеми– критические точки. Если знаменатель, т.е., то производная не существует. Итак,– третья критическая точка. Определим знак производной в интервалах.

Следовательно, функция имеет минимум в точке , максимум в точкахи.

.

3) Функция определена и непрерывна, если , т.е. при.

Найдем производную

.

Найдем критические точки:

Окрестности точек не принадлежат области определения, поэтому они не являются т. экстремума. Итак, исследуем критические точкии.

.

4) Функция определена и непрерывна на интервале . Используем правило 2. Найдем производную.

Найдем критические точки:

Найдем вторую производную и определим ее знак в точках

.

В точках функция имеет минимум.

.

В точках функция имеет максимум.

Соседние файлы в папке Математика.Методичка