- •Министерство образования российской
- •Содержание От авторов 7
- •Библиографический список 192 От авторов
- •1. Физические основы механики
- •2.1. Механика и ее разделы. Физические модели: материальная точка (частица), абсолютно твердое тело (система материальных точек), сплошная среда
- •2.2. Пространственно-временные отношения. Развитие представлений о свойствах пространства и времени в механике
- •2.3. Системы отсчета и описание движений. Элементы кинематики материальной точки: перемещение, скорость и ускорение
- •2.4. Элементы кинематики материальной точки и тела, совершающих вращательное движение: угол поворота, угловые скорость и ускорение. Их связь с линейной скоростью и линейным ускорением
- •2.5. Гармонические колебательные движения и их характеристики: смещение, амплитуда, период, частота, фаза, скорость и ускорение
- •2.6. Методы сложения гармонических колебаний. Векторные диаграммы. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •2.7. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу
- •3.2. Инерциальные и неинерциальные системы отсчета
- •3.3. Описание движения в неинерциальных системах отсчета
- •3.3.1. Силы инерции при ускоренном движении системы отсчета
- •3.3.2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета
- •3.3.3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета (сила Кориолиса)
- •Силы инерции, возникающие в неинерциальной системе отсчета в зависимости от состояния частицы
- •3.5. Основной закон динамики вращательного движения
- •3.6. Сопоставление формул динамики вращательного и динамики поступательного движений
- •Сопоставление формул динамики поступательного движения и динамики вращательного движения
- •4.1. Дифференциальное уравнение гармонических колебаний и его решение
- •4.2. Примеры гармонических осцилляторов. Физический, математический и пружинный маятники. Определение их периодов и частот
- •4.2.1. Пружинный маятник
- •4.2.2. Физический и математический маятники
- •4.3. Свободные (затухающие колебания). Дифференциальное уравнение затухающих колебаний и его решение. Характеристики затухающих колебаний
- •4.4. Вынужденные колебания гармонического осциллятора под действием синусоидальной силы. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний
- •5.1. Нелинейный осциллятор. Физические системы, содержащие нелинейность
- •5.2. Автоколебания. Обратная связь. Условие самовозбуждения. Роль нелинейности. Предельные циклы
- •6.1. Кинематика и динамика волновых процессов. Плоская стационарная и синусоидальная волна
- •6.2. Уравнение плоской волны
- •6.3.Волновое уравнение
- •6.4. Интерференция волн. Стоячие волны
- •7.1. Работа силы и её выражение через криволинейный интеграл
- •Из (7.1) следует, что при
- •Сила действует в направлении перемещения, поэтому
- •7.1.1. Работа, совершаемая внешними силами при вращательном движении относительно неподвижной оси
- •7.2. Мощность
- •Различают мгновенную мощность и среднюю мощность.
- •Поскольку
- •7.3. Энергия как универсальная мера различных форм движений и взаимодействий
- •7.4. Кинетическая энергия системы и её связь с работой внешних и внутренних сил, приложенных к системе
- •7.5. Энергия системы, совершающей вращательное движение
- •Подставив значение VI в (7.35) будем иметь
- •То есть работа внешних сил, действующих на вращающуюся относительно неподвижной оси материальную точку (тело, систему), равна изменению кинетической энергии:
- •7.6. Потенциальная энергия и энергия взаимодействия. Потенциальная энергия и устойчивость системы
- •7.6.1. Связь между потенциальной энергией и силой
- •7.6.2. Внутренняя энергия
- •7.6.3. Силовые поля. Поле как форма существования материи. Поле как форма существования материи осуществляющая силовое взаимодействие между материальными объектами. Характеристики силовых полей
- •Второй характеристикой силового потенциального поля является потенциал.
- •7.6.4. Потенциальная энергия материальной точки (тела, системы) во внешнем силовом поле
- •7.6.5. Поле центральных сил. Движение в поле центральных сил
- •Элементарная работа по перемещению массы на элементарном отрезке dr:
- •Из полученного соотношения видно:
- •В случае, когда сила притяжения будет равна центростремительной силе, то
- •Подставляя значения vа и vп в формулу (7.41), будем иметь
- •Подставив в формулу (7.83) значения r и V, будем иметь t 92 мин.
- •7.7. Энергия упругой деформации
- •7.8. Энергия системы, совершающей колебательное движение
- •Кинетическая энергия системы, совершающей гармоническое колебание, находится по формуле
- •8.1. Закон сохранения энергии в механике
- •8.1.1. Общефизический закон сохранения энергии
- •8.1.2. Закон сохранения и превращения механической энергии
- •8.2. Закон сохранения импульса. Центр инерции. Закон движения центра инерции
- •8.3. Закон сохранения момента импульса. Уравнение моментов
- •В векторной форме
- •8.5. Применение законов сохранения к упругому и неупругому взаимодействиям (удару)
- •8.5.1. Абсолютно неупругий удар шаров
- •9.1. Принцип относительности Галилея. Преобразования Галилея. Инварианты преобразования. Закон сложения скоростей в классической механике
- •9.2. Постулаты и представления о свойствах пространства и времени в специальной теории относительности
- •9.3. Преобразования Лоренца для координат и времени
- •9.4. Следствия из преобразований Лоренца
- •9.4.1. Закон сложения скоростей в теории относительности
- •9.4.2. Сокращение движущихся масштабов длин
- •9.4.3.Замедление хода движущихся часов
- •10.2. Четырехмерное пространство - время. Преобразования в четырехмерном пространстве
- •10.2.1. Основные понятия
- •10.2.2. Кинематика четырехмерного пространства-времени
- •10.2.3. Динамика четырехмерного пространства-времени
- •10.3. Столкновения релятивистских частиц. Законы сохранения энергии и импульса
- •10.4. Значение теории относительности
- •Библиографический список
9.1. Принцип относительности Галилея. Преобразования Галилея. Инварианты преобразования. Закон сложения скоростей в классической механике
Теория относительности, физическая теория, рассматривающая пространственно-временные закономерности, справедливые для любых физических процессов. Универсальность пространственно-временных свойств, рассматриваемых теорией относительности, позволяет говорить о них просто как о свойствах пространства-времени.
Наиболее общая теория пространства-времени называется общей теорией относительности (ОТО) или теорией тяготения, так как согласно этой теории свойства пространства-времени в данной области определяются действующими в ней полями тяготения. В специальной (частной) теории относительности (СТО), основы которой были опубликованы А. Эйнштейном в 1905 г., изучаются свойства пространства-времени, справедливые с той точностью, с какой можно пренебрегать действием тяготения.
Таким образом, логически СТО - частный случай ОТО; исторически построение ОТО А. Эйнштейном было завершено в 1915 году, после чего и появился термин "частная (специальная) теория относительности". Надо отметить, что еще до появления СТО голландский и французский физики Лоренц и Пуанкаре были близки к получению результатов, вытекающих из положений СТО.
А. Эйнштейн представил с единой точки зрения все известные до него эксперименты по определению скорости света и зависимости скорости распространения света от того, движутся или нет источники и приемники света, изложил физическое понимание проблем, с которыми столкнулись электродинамика и оптика.
Рассматривая движение материальных точек (тел) в классической механике, предполагается, что они движутся со скоростями vc (v - скорость движущегося объекта; c - скорость распространения света в вакууме).
Говоря о механическом движении, т.е. о перемещении тела в пространстве, всегда имеется в виду его движение относительно других тел (или одних частей тела относительно других его частей). Для математического описания движения тел с этим телом и другими телами жестко связывается система отсчета и часы для определения времени. Положение материальной точки (тела) в выбранной системе отсчета определяется либо с помощью координат (X,У,Z), либо с помощью радиус-вектора r и часов. При движении материальной точки (тела) в инерциальной системе отсчета предполагается: 1) выбранная система отсчета неподвижна или движется равномерно и прямолинейно относительно любой другой инерциальной системы отсчета; 2) условия движения тела в различных системах отсчета одинаковы; 3) основное уравнение динамики F = dp/dt = ma (второй закон Ньютона) справедливо, если наблюдатель неподвижен относительно выбранной системы отсчета. В этом случае: 1) тело, брошенное вдоль вагона, достигает противоположной стенки за одно и то же время, независимо от того движется ли оно по направлению движения поезда или в противоположном направлении, причем это время такое же, как и в покоящемся вагоне; 2) тело, брошенное вертикально вверх в вагоне, движущимся равномерно и прямолинейно (движущейся системе отсчета), вернется в ту же точку вагона, из которой оно было брошено, а не отклонится в сторону, противоположную направлению движения вагона; 3) упругий удар биллиардных шаров в обеих инерциальных системах (покоящейся и движущейся) отсчета заканчивается разлетом на одинаковые углы и с одинаковыми скоростями, если только в двух системах отсчета были одинаковые начальные скорости и направления движения.
Все это показывает, что в классической механике справедлив следующий закон природы: "В двух системах отсчета, движущихся друг относительно друга равномерно и прямолинейно, все механические явления протекают одинаково (при одинаковых условиях)".
Это положение, сформулированное еще Галилеем, получило название классического принципа относительности, или принципа относительности Галилея.
Если начальные условия в различных системах отсчета не одинаковы, то величины, характеризующие движение (координаты, скорости, траектория движения), относительны. Например, траектория движения тела, свободно падающего вертикально вниз в неподвижной системе отсчета, представляет собой прямую линию. Однако по отношению к движущейся системе отсчета это же тело движется по параболе.
Наблюдая движение тел внутри инерциальных систем отсчета, нельзя установить, какая из них движется, а какая покоится.
Это позволяет придать принципу относительности Галилея другую (отрицательную) формулировку: "Никакие опыты, проводимые в инерциальных системах отсчета с механическими приборами (представляющими собой совокупность пружин, нитей, блоков, рычагов и т. д.), не позволяют установить, покоится система отсчета или движется равномерно и прямолинейно по отношению к другой инерциальной системе отсчета.
Рассмотрим две инерциальные системы отсчета: систему К, которую будем считать условно неподвижной, и систему К', движущуюся относительно К равномерно и прямолинейно со скоростью v0 (v0 = const). Отсчет времени начнем с момента, когда начала координат обеих систем совпадали. В классической механике предполагается, что время не зависит от относительного движения систем отсчета (рис.9.1).
Положение произвольной точки в этих системах можно определить радиус-векторами r и r'; положение начала координат системы К' в системе К - радиус-вектором ro. Если направление скорости v0 совпадает с направлением ro, то в произвольный момент времени t, положение выбранной точки в системе К можно определить так:
r = r' + r0 = r' + vot; t = t'. (9.1)
В проекциях на оси координат выражение (9.1) будет иметь следующий вид:
x = x' + v0xt,
у = у' + v0уt,
z = z' + v0zt,
t = t'. (9.2)
Соотношения (9.2) называют обратными преобразованиями координат Галилея. Для получения прямых преобразований Галилея необходимо поменять знак относительной скорости v0. В результате получим
x' = x - v0xt,
у' = у - v0уt,
z' = z - v0zt,
t = t'. (9.3)
Или в векторной форме
r' = r -v0t; t = t'. (9.4)
Уравнения, обе части которых при переходе от одной системы координат к другой преобразуются одинаково и благодаря этому сохраняют свой вид во всех координатных (инерциальных) системах, называются ковариантными или инвариантными по отношению к рассматриваемому преобразованию координатных систем. Поэтому уравнения, выражающие физические законы в векторной форме, не зависят от выбора осей координат, они инвариантны.
Продифференцировав (9.1) по времени, получим
v = v' + v0. (9.5)
Уравнение (9.5) является математической формой записи закона сложения скоростей в классической механике.
Из выражения (9.5)
; a = a'. (9.6)
Таким образом, ускорение выбранной точки в инерциальных системах отсчета К и К', движущихся относительно друг друга равномерно и прямолинейно, одинаково. Следовательно, если на рассматриваемую точку не действуют внешние силы, то согласно (9.6) система К' является инерциальной (выбранная точка движется относительно нее равномерно и прямолинейно).
Умножив (9.6) на массу материальной точки, будем иметь
ma = ma', (9.7)
или
ma = F; ma' = F'. (9.8)
Уравнения (9.8) выражают основной закон классической динамики. Равенство F = F' означает, что законы классической динамики инвариантны при переходе от одной инерциальной системы к другой, что в свою очередь подтверждает справедливость принципа относительности Галилея.
В классической механике предполагается, что время во всех инерциальных системах отсчета одно и то же (это можно доказать), а координаты выбранной материальной точки (тела) относительны. Относительные расстояния между двумя точками пространства определяются из геометрических соображений. При этом относительное расстояние между выбранными точками пространства в подвижной системе отсчета определяется соотношением
, (9.9)
а в неподвижной системе отсчета
. (9.10)
Сравнив (9.9) и (9.10), можно сделать вывод, что относительные расстояния в классической механике одинаковы во всех инерциальных системах отсчета, они абсолютны, т.е. инвариантны.
Таким образом, принцип относительности по своему содержанию глубоко диалектичен. Он утверждает относительность ряда величин и понятий (координаты, скорости, траектории), содержит утверждение об абсолютности (инвариантности) расстояния между телами (точками), промежутков времени между событиями, относительных скоростей тел, ускорений, об инвариантности (абсолютности) законов природы. С этой точки зрения, само название "принцип относительности" не является наиболее удачным, так как оно подчеркивает только одну, причем не самую важную сторону - относительность, и игнорирует другую - абсолютность (инвариантность) законов механики. Следовательно, можно привести математическую формулировку принципа относительности Галилея: уравнения второго закона Ньютона инвариантны относительно преобразований Галилея.
Инвариантные величины (расстояния между телами (точками), промежутки времени между событиями, относительные скорости тел, ускорения) называют инвариантами преобразований.