- •Министерство образования российской
- •Содержание От авторов 7
- •Библиографический список 192 От авторов
- •1. Физические основы механики
- •2.1. Механика и ее разделы. Физические модели: материальная точка (частица), абсолютно твердое тело (система материальных точек), сплошная среда
- •2.2. Пространственно-временные отношения. Развитие представлений о свойствах пространства и времени в механике
- •2.3. Системы отсчета и описание движений. Элементы кинематики материальной точки: перемещение, скорость и ускорение
- •2.4. Элементы кинематики материальной точки и тела, совершающих вращательное движение: угол поворота, угловые скорость и ускорение. Их связь с линейной скоростью и линейным ускорением
- •2.5. Гармонические колебательные движения и их характеристики: смещение, амплитуда, период, частота, фаза, скорость и ускорение
- •2.6. Методы сложения гармонических колебаний. Векторные диаграммы. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •2.7. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу
- •3.2. Инерциальные и неинерциальные системы отсчета
- •3.3. Описание движения в неинерциальных системах отсчета
- •3.3.1. Силы инерции при ускоренном движении системы отсчета
- •3.3.2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета
- •3.3.3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета (сила Кориолиса)
- •Силы инерции, возникающие в неинерциальной системе отсчета в зависимости от состояния частицы
- •3.5. Основной закон динамики вращательного движения
- •3.6. Сопоставление формул динамики вращательного и динамики поступательного движений
- •Сопоставление формул динамики поступательного движения и динамики вращательного движения
- •4.1. Дифференциальное уравнение гармонических колебаний и его решение
- •4.2. Примеры гармонических осцилляторов. Физический, математический и пружинный маятники. Определение их периодов и частот
- •4.2.1. Пружинный маятник
- •4.2.2. Физический и математический маятники
- •4.3. Свободные (затухающие колебания). Дифференциальное уравнение затухающих колебаний и его решение. Характеристики затухающих колебаний
- •4.4. Вынужденные колебания гармонического осциллятора под действием синусоидальной силы. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний
- •5.1. Нелинейный осциллятор. Физические системы, содержащие нелинейность
- •5.2. Автоколебания. Обратная связь. Условие самовозбуждения. Роль нелинейности. Предельные циклы
- •6.1. Кинематика и динамика волновых процессов. Плоская стационарная и синусоидальная волна
- •6.2. Уравнение плоской волны
- •6.3.Волновое уравнение
- •6.4. Интерференция волн. Стоячие волны
- •7.1. Работа силы и её выражение через криволинейный интеграл
- •Из (7.1) следует, что при
- •Сила действует в направлении перемещения, поэтому
- •7.1.1. Работа, совершаемая внешними силами при вращательном движении относительно неподвижной оси
- •7.2. Мощность
- •Различают мгновенную мощность и среднюю мощность.
- •Поскольку
- •7.3. Энергия как универсальная мера различных форм движений и взаимодействий
- •7.4. Кинетическая энергия системы и её связь с работой внешних и внутренних сил, приложенных к системе
- •7.5. Энергия системы, совершающей вращательное движение
- •Подставив значение VI в (7.35) будем иметь
- •То есть работа внешних сил, действующих на вращающуюся относительно неподвижной оси материальную точку (тело, систему), равна изменению кинетической энергии:
- •7.6. Потенциальная энергия и энергия взаимодействия. Потенциальная энергия и устойчивость системы
- •7.6.1. Связь между потенциальной энергией и силой
- •7.6.2. Внутренняя энергия
- •7.6.3. Силовые поля. Поле как форма существования материи. Поле как форма существования материи осуществляющая силовое взаимодействие между материальными объектами. Характеристики силовых полей
- •Второй характеристикой силового потенциального поля является потенциал.
- •7.6.4. Потенциальная энергия материальной точки (тела, системы) во внешнем силовом поле
- •7.6.5. Поле центральных сил. Движение в поле центральных сил
- •Элементарная работа по перемещению массы на элементарном отрезке dr:
- •Из полученного соотношения видно:
- •В случае, когда сила притяжения будет равна центростремительной силе, то
- •Подставляя значения vа и vп в формулу (7.41), будем иметь
- •Подставив в формулу (7.83) значения r и V, будем иметь t 92 мин.
- •7.7. Энергия упругой деформации
- •7.8. Энергия системы, совершающей колебательное движение
- •Кинетическая энергия системы, совершающей гармоническое колебание, находится по формуле
- •8.1. Закон сохранения энергии в механике
- •8.1.1. Общефизический закон сохранения энергии
- •8.1.2. Закон сохранения и превращения механической энергии
- •8.2. Закон сохранения импульса. Центр инерции. Закон движения центра инерции
- •8.3. Закон сохранения момента импульса. Уравнение моментов
- •В векторной форме
- •8.5. Применение законов сохранения к упругому и неупругому взаимодействиям (удару)
- •8.5.1. Абсолютно неупругий удар шаров
- •9.1. Принцип относительности Галилея. Преобразования Галилея. Инварианты преобразования. Закон сложения скоростей в классической механике
- •9.2. Постулаты и представления о свойствах пространства и времени в специальной теории относительности
- •9.3. Преобразования Лоренца для координат и времени
- •9.4. Следствия из преобразований Лоренца
- •9.4.1. Закон сложения скоростей в теории относительности
- •9.4.2. Сокращение движущихся масштабов длин
- •9.4.3.Замедление хода движущихся часов
- •10.2. Четырехмерное пространство - время. Преобразования в четырехмерном пространстве
- •10.2.1. Основные понятия
- •10.2.2. Кинематика четырехмерного пространства-времени
- •10.2.3. Динамика четырехмерного пространства-времени
- •10.3. Столкновения релятивистских частиц. Законы сохранения энергии и импульса
- •10.4. Значение теории относительности
- •Библиографический список
7.3. Энергия как универсальная мера различных форм движений и взаимодействий
В общем случае энергия выражает количественную меру и качественную характеристику движения и взаимодействия материи во всех ее превращениях. Понятие энергии связывает воедино все явления природы.
В соответствии с различными формами движения материи рассматривают различные формы энергии: механическую, внутреннюю, электромагнитную, химическую, ядерную. Это деление до определенной степени условно. Так, химическая энергия складывается из кинетической энергии движения электронов и энергии взаимодействия электронов друг с другом и с атомными ядрами. Внутренняя энергия равна сумме кинетических энергий хаотического движения молекул и атомов относительно центра масс тел и потенциальной энергии взаимодействия молекул и атомов друг с другом. Энергия системы однозначно зависит от параметров, характеризующих состояние системы. В случае непрерывной среды или поля вводятся понятия плотности энергии, т.е. энергии в единице объема, и плотности потока энергии, равной произведению плотности энергии на скорость ее перемещения.
Теория относительности показала, что энергия тела неразрывно связана с его массой m соотношением E = mc2. Любое тело обладает энергией. Если масса покоящегося тела m0, то его энергия покоя E0 = m0c2. Энергия может переходить в другие виды энергии при превращениях частиц (распадах, ядерных реакциях).
Согласно классической физике энергия любой системы меняется непрерывно и может принимать любые значения. Квантовая теория утверждает, что энергия микрочастиц, движение которых происходит в ограниченном объеме пространства (например, электронов в атоме), принимает дискретный ряд значений. Так атомы испускают и поглощают электромагнитную энергию в виде дискретных порций - световых квантов, или фотонов.
Оказывается, что любая материальная система может совершить лишь ограниченное количество работы, соответствующее определенному в данных условиях количеству присущего ей движения.
Это свойство материальной системы совершать при переходе из данного состояния в некоторое другое определенную работу связано с ее энергией. Чем большую работу может совершить система при переходе в свое «нормальное» состояние, тем больше ее энергия в исходном состоянии. «Нормальным» состоянием системы называется такое ее состояние, в котором она уже не может совершать работу при данных условиях за счет энергии данного вида.
Энергия может быть выражена через величины, характеризующие строение и свойства материальной системы. Она является функцией состояния системы, характеризует способность системы к совершению работы при переходе из одного состояния в другое.
Разность энергий (изменение энергии), присущих системе в каких-либо состояниях, равна работе, совершаемой системой при переходе из одного состояния в другое:
W = W1 – W2 = A. (7.24)
Механической энергией, соответствующей данной форме движения материи, называется величина, равная работе, которая может быть произведена при полном превращении движения данной формы в механическую форму движения материи. Под механической энергией системы подразумевают сумму кинетической и потенциальной энергий.