- •Министерство образования российской
- •Содержание От авторов 7
- •Библиографический список 192 От авторов
- •1. Физические основы механики
- •2.1. Механика и ее разделы. Физические модели: материальная точка (частица), абсолютно твердое тело (система материальных точек), сплошная среда
- •2.2. Пространственно-временные отношения. Развитие представлений о свойствах пространства и времени в механике
- •2.3. Системы отсчета и описание движений. Элементы кинематики материальной точки: перемещение, скорость и ускорение
- •2.4. Элементы кинематики материальной точки и тела, совершающих вращательное движение: угол поворота, угловые скорость и ускорение. Их связь с линейной скоростью и линейным ускорением
- •2.5. Гармонические колебательные движения и их характеристики: смещение, амплитуда, период, частота, фаза, скорость и ускорение
- •2.6. Методы сложения гармонических колебаний. Векторные диаграммы. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •2.7. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу
- •3.2. Инерциальные и неинерциальные системы отсчета
- •3.3. Описание движения в неинерциальных системах отсчета
- •3.3.1. Силы инерции при ускоренном движении системы отсчета
- •3.3.2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета
- •3.3.3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета (сила Кориолиса)
- •Силы инерции, возникающие в неинерциальной системе отсчета в зависимости от состояния частицы
- •3.5. Основной закон динамики вращательного движения
- •3.6. Сопоставление формул динамики вращательного и динамики поступательного движений
- •Сопоставление формул динамики поступательного движения и динамики вращательного движения
- •4.1. Дифференциальное уравнение гармонических колебаний и его решение
- •4.2. Примеры гармонических осцилляторов. Физический, математический и пружинный маятники. Определение их периодов и частот
- •4.2.1. Пружинный маятник
- •4.2.2. Физический и математический маятники
- •4.3. Свободные (затухающие колебания). Дифференциальное уравнение затухающих колебаний и его решение. Характеристики затухающих колебаний
- •4.4. Вынужденные колебания гармонического осциллятора под действием синусоидальной силы. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний
- •5.1. Нелинейный осциллятор. Физические системы, содержащие нелинейность
- •5.2. Автоколебания. Обратная связь. Условие самовозбуждения. Роль нелинейности. Предельные циклы
- •6.1. Кинематика и динамика волновых процессов. Плоская стационарная и синусоидальная волна
- •6.2. Уравнение плоской волны
- •6.3.Волновое уравнение
- •6.4. Интерференция волн. Стоячие волны
- •7.1. Работа силы и её выражение через криволинейный интеграл
- •Из (7.1) следует, что при
- •Сила действует в направлении перемещения, поэтому
- •7.1.1. Работа, совершаемая внешними силами при вращательном движении относительно неподвижной оси
- •7.2. Мощность
- •Различают мгновенную мощность и среднюю мощность.
- •Поскольку
- •7.3. Энергия как универсальная мера различных форм движений и взаимодействий
- •7.4. Кинетическая энергия системы и её связь с работой внешних и внутренних сил, приложенных к системе
- •7.5. Энергия системы, совершающей вращательное движение
- •Подставив значение VI в (7.35) будем иметь
- •То есть работа внешних сил, действующих на вращающуюся относительно неподвижной оси материальную точку (тело, систему), равна изменению кинетической энергии:
- •7.6. Потенциальная энергия и энергия взаимодействия. Потенциальная энергия и устойчивость системы
- •7.6.1. Связь между потенциальной энергией и силой
- •7.6.2. Внутренняя энергия
- •7.6.3. Силовые поля. Поле как форма существования материи. Поле как форма существования материи осуществляющая силовое взаимодействие между материальными объектами. Характеристики силовых полей
- •Второй характеристикой силового потенциального поля является потенциал.
- •7.6.4. Потенциальная энергия материальной точки (тела, системы) во внешнем силовом поле
- •7.6.5. Поле центральных сил. Движение в поле центральных сил
- •Элементарная работа по перемещению массы на элементарном отрезке dr:
- •Из полученного соотношения видно:
- •В случае, когда сила притяжения будет равна центростремительной силе, то
- •Подставляя значения vа и vп в формулу (7.41), будем иметь
- •Подставив в формулу (7.83) значения r и V, будем иметь t 92 мин.
- •7.7. Энергия упругой деформации
- •7.8. Энергия системы, совершающей колебательное движение
- •Кинетическая энергия системы, совершающей гармоническое колебание, находится по формуле
- •8.1. Закон сохранения энергии в механике
- •8.1.1. Общефизический закон сохранения энергии
- •8.1.2. Закон сохранения и превращения механической энергии
- •8.2. Закон сохранения импульса. Центр инерции. Закон движения центра инерции
- •8.3. Закон сохранения момента импульса. Уравнение моментов
- •В векторной форме
- •8.5. Применение законов сохранения к упругому и неупругому взаимодействиям (удару)
- •8.5.1. Абсолютно неупругий удар шаров
- •9.1. Принцип относительности Галилея. Преобразования Галилея. Инварианты преобразования. Закон сложения скоростей в классической механике
- •9.2. Постулаты и представления о свойствах пространства и времени в специальной теории относительности
- •9.3. Преобразования Лоренца для координат и времени
- •9.4. Следствия из преобразований Лоренца
- •9.4.1. Закон сложения скоростей в теории относительности
- •9.4.2. Сокращение движущихся масштабов длин
- •9.4.3.Замедление хода движущихся часов
- •10.2. Четырехмерное пространство - время. Преобразования в четырехмерном пространстве
- •10.2.1. Основные понятия
- •10.2.2. Кинематика четырехмерного пространства-времени
- •10.2.3. Динамика четырехмерного пространства-времени
- •10.3. Столкновения релятивистских частиц. Законы сохранения энергии и импульса
- •10.4. Значение теории относительности
- •Библиографический список
6.2. Уравнение плоской волны
Уравнение плоской волны - выражение, которое определяет смещение колеблющейся точки как функцию ее координат и времени, т.е.
= (x, у, z, t), (6.4)
где - смещение.
Рис.6.1
. (6.5)
В точке пространства, расположенной на расстоянии x от места возникновения волны, частицы будут совершать те же колебания, что и в точке возникновения волны. Волновые поверхности в этом случае будут перпендикулярны к оси X. Поскольку все точки волновой поверхности колеблются одинаково, то смещение будет зависеть только от x и t = (x, t).
Для прохождения расстояния от места возникновения до рассматриваемой точки волне требуется время. Фронт волны придет в рассматриваемую точку пространства спустя время .
Уравнение колебаний в рассматриваемой точке будет иметь вид
. (6.6)
Формула (6.6) представляет собой уравнение прямой бегущей волны, т.е. распространяющейся в направлении положительной полуоси X.
Бегущими волнами называются волны, которые переносят в пространстве энергию. Количественно перенос энергии волнами характеризуется вектором плотности потока энергии
. (6.7)
Вектор плотности потока энергии – физическая величина, модуль которой равен энергии E, переносимой волной за единицу времени (t=1) через единичную площадку, расположенную перпендикулярно направлению распространения волны (S). Направление вектора потока плотности энергии (вектора Умова) совпадает с направлением переноса энергии. Можно показать, что численное значение вектора потока плотности энергии определяется соотношением
j = uv, (6.8)
где u – плотность энергии в каждой точке среды, среднее значение которой равно:
;
ρ – плотность среды;
0 – амплитуда волны; - круговая (циклическая частота);
v – фазовая скорость (скорость перемещения фазы волны).
В векторной форме:
j = uv. (6.9)
Фазовая скорость упругих волн:
а) продольных ; (6.10)
б) поперечных , (6.11)
где E – модуль Юнга (характеристика упругих свойств среды, обратная коэффициенту упругости);
G – модуль сдвига (он равен такому тангенциальному напряжению, при котором угол сдвига оказался бы равен 45о, если бы при столь больших деформациях не был превзойден предел упругости).
Понятие фазовой скорости справедливо для монохроматических волн.
Так как распространяющиеся в пространстве волны представляют собой волновой пакет (в силу принципа суперпозиции), то кроме фазовой скорости, для волнового пакета вводят в рассмотрение понятие групповой скорости. Волновой пакет – совокупность волн, частоты которых мало отличаются друг от друга.
Групповой скоростью называют скорость перемещения в пространстве амплитуды волны. С ней происходит перенос энергии волны. Групповая скорость определяется следующим соотношением:
. (6.12)
Уравнение обратной волны можно получить путем замены в (6.6) х на (-х):
. (6.13)