
- •Конспект лекций
- •Оглавление
- •От авторов
- •Введение
- •Лекция 1. Электростатика в вакууме и веществе. Электрическое поле
- •1.1. Предмет классической электродинамики
- •1.2. Электрический заряд и его дискретность. Теория близкодействия
- •1.3. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей
- •1.3.1. Границы применимости закона Кулона
- •1.3.2. Принцип суперпозиции электрических полей. Электрическое поле диполя
- •1.4. Поток вектора напряженности электростатического поля
- •1.5. Теорема Остроградского-Гаусса для электрического поля в вакууме
- •1.6. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля
- •1.7. Энергия электрического заряда в электрическом поле
- •1.8. Потенциал и разность потенциалов электрического поля. Связь напряженности электрического поля с его потенциалом
- •1.8.1. Потенциал и разность потенциалов электрического поля
- •1.8.2. Связь напряженности электрического поля с его потенциалом
- •1.9. Эквипотенциальные поверхности
- •1.10. Основные уравнения электростатики в вакууме
- •1.11.2. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.11.3. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •1.11.4. Поле заряженной сферической поверхности
- •1.11.5. Поле объёмно заряженного шара
- •Лекция 2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электростатическое поле в полости идеального проводника и у его поверхности. Электростатическая защита. Распределение зарядов в объеме проводника и по его поверхности
- •2.3. Электроемкость уединенного проводника и ее физический смысл
- •2.4. Конденсаторы и их емкость
- •2.4.1. Емкость плоского конденсатора
- •2.4.2. Емкость цилиндрического конденсатора
- •2.4.3. Емкость сферического конденсатора
- •2.5. Соединения конденсаторов
- •2.5.1. Последовательное соединение конденсаторов
- •2.5.2. Параллельное и смешанное соединения конденсаторов
- •2.6. Классификация конденсаторов
- •Лекция 3. Статическое электрическое поле в веществе
- •3.1. Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях
- •3.1.1. Диполь в однородном электрическом поле
- •3.1.2. Диполь в неоднородном внешнем электрическом поле
- •3.2. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность)
- •3.4. Условия на границе раздела двух диэлектриков
- •3.5. Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект
- •3.6. Основные уравнения электростатики диэлектриков
- •Лекция 4. Энергия электрического поля
- •4.1. Энергия взаимодействия электрических зарядов
- •4.2. Энергия заряженных проводников, диполя во внешнем электрическом поле, диэлектрического тела во внешнем электрическом поле, заряженного конденсатора
- •4.3. Энергия электрического поля. Объемная плотность энергии электрического поля
- •4.4. Силы, действующие на макроскопические заряженные тела, помещенные в электрическое поле
- •Лекция 5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина /сила/ тока, плотность тока. Сторонние силы
- •5.3. Электродвижущая сила (эдс), напряжение и разность потенциалов. Их физический смысл. Связь между эдс, напряжением и разностью потенциалов
- •Лекция 6. Классическая электронная теория проводимости металлов. Законы постоянного тока
- •6.1. Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной и интегральной формах
- •6.2. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость
- •6.3. Соединения сопротивлений: последовательное, параллельное, смешанное. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.3.1. Последовательное соединение сопротивлений
- •6.3.2. Параллельное соединение сопротивлений
- •6.3.3. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6.5. Закон Джоуля-Ленца в дифференциальной и интегральной формах
- •6.6. Энергия, выделяющаяся в цепи постоянного тока. Коэффициент полезного действия (кпд) источника постоянного тока
- •Лекция 7. Электрический ток в вакууме, газах и жидкостях
- •7.1. Электрический ток в вакууме. Термоэлектронная эмиссия
- •7.2. Вторичная и автоэлектронная эмиссия
- •7.3. Электрический ток в газе. Процессы ионизации и рекомбинации
- •7.3.1. Несамостоятельная и самостоятельная проводимость газов
- •7.3.2. Закон Пашена
- •7.3.3. Виды разрядов в газах
- •7.3.3.1. Тлеющий разряд
- •7.3.3.2. Искровой разряд
- •7.3.3.3. Коронный разряд
- •7.3.3.4. Дуговой разряд
- •7.4. Понятие о плазме. Плазменная частота. Дебаевская длина. Электропроводность плазмы
- •7.5. Электролиты. Электролиз. Законы электролиза
- •7.6. Электрохимические потенциалы
- •7.7. Электрический ток через электролиты. Закон Ома для электролитов
- •7.7.1. Применение электролиза в технике
- •Лекция 8. Электроны в кристаллах
- •8.1. Квантовая теория электропроводности металлов. Уровень Ферми. Элементы зонной теории кристаллов
- •8.2. Явление сверхпроводимости с точки зрения теории Ферми-Дирака
- •8.3. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •8.3.1. Собственная проводимость полупроводников
- •8.3.2. Примесные полупроводники
- •8.4. Электромагнитные явления на границе раздела сред
- •8.4.1. P-n – переход
- •8.4.2. Фотопроводимость полупроводников
- •8.4.3. Люминесценция вещества
- •8.4.4. Термоэлектрические явления. Закон Вольта
- •8.4.5. Эффект Пельтье
- •8.4.6. Явление Зеебека
- •8.4.7. Явление Томсона
- •Заключение
- •Библиографический список Основной
- •Дополнительный
6.3.3. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
Рассмотренные
виды соединения сопротивлений применяются
в электроизмерительных приборах, с
целью расширения их пределов измерения.
Например, для расширения предела
измерения гальванометра к его зажимам
присоединяют параллельно проводник с
малым сопротивлением, называемый шунтом
(рис. 6.9). Гальванометр (электроизмерительный
прибор высокой чувствительности)
применяется для измерения малых токов,
напряжений и количества электричества.
Он рассчитан на измерение тока не выше
предельного значения, указанного на
шкале прибора. Обозначим сопротивление
гальванометра через R, а сопротивление
шунта – через r. Пусть R в n раз больше,
чемr,
т.е. R/r = n. Токи в цепи, в гальванометре
и в шунте обозначим через I, Ig,
Ir.
Тогда, согласно выражению (6.38),
;
.
Полный ток в цепи
.
Откуда
. (6.44)
Таким образом, ток в гальванометре в (n + 1) раз меньше, чем ток в общей цепи. Тем самым благодаря шунту с помощью гальванометра можно измерять токи в (n + 1) раз большие, чем те, на которые он рассчитан, при этом цена деления прибора увеличивается в (n+1) раз.
Гальванометр можно использовать и для измерения напряжения, если к нему последовательно присоединить добавочное сопротивление. Обозначим сопротивление гальванометра через R, а добавочное сопротивление – через r. Пусть r в n раз больше R, т.е. r/R = n. Тогда общее напряжение на добавочном сопротивлении и сопротивлении гальванометра (рис. 6.10)
(6.45)
Величина IR = Ug - напряжение на гальванометре. Следовательно, можно записать
. (6.46)
Таким образом, напряжение на гальванометре будет в (n + 1) раз меньше измеряемого. Тем самым, благодаря добавочному сопротивлению, с помощью гальванометра можно измерять напряжения в (n+1) раз большие, чем те, на которые он рассчитан. При этом цена прибора увеличивается в (n + 1) раз.
Надо отметить, что применять шунты и добавочные сопротивления можно не только к гальванометрам, но и к другим приборам (амперметрам, вольтметрам) с целью расширения их пределов измерения.
6.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
Закон
Ома позволяет рассчитывать электрические
цепи, в которых все элементы (проводники)
соединены последовательно и в которых
существует один и тот же ток. На
практике чаще всего встречаются
электрические цепи с большим количеством
разветвлений, токи в которых неравны
(разветвленные электрические цепи).
Для упрощения расчетов таких цепей
пользуются правилами (законами) Кирхгофа
(1847 г.). Рассмотрим произвольную цепь,
состоящую из нескольких проводников
и источников тока (рис. 6.11). Будем называть
все точки, в которых сходятся не менее
трех токов (проводников) узловыми
точками или узлами (A
и B).
Участки цепи между узлами – ветвями
(например, AE1R1R4B),
а участки цепи, состоящие из нескольких
ветвей и образующие замкнутую цепь, –
контурами (например, AE1R1R4BE2R2A).
Условимся считать подходящие к узлу токи положительными токами, отходящие - отрицательными. Введя данные определения, сформулируем законы Кирхгофа:
Первый закон: Алгебраическая сумма токов, сходящихся в узле, равна нулю, т. е.
.
(6.47)
В нашем случае для узла A
.
(6.48)
При решении задач на основании первого закона Кирхгофа можно составить (n – 1) уравнение, где n – число узлов. Так как число узловых точек всегда меньше числа неизвестных величин, то для их определения составляют ряд дополнительных уравнений, пользуясь вторым законом Кирхгофа.
Второй закон: Алгебраическая сумма падений напряжений на отдельных участках замкнутой цепи (замкнутого независимого контура) равна алгебраической сумме ЭДС, действующих в них, т. е.
.
(6.49)
На основании второго закона Кирхгофа составляют (m – 1) уравнение, где m – число независимых контуров, т.е. таких, которые содержат хотя бы один элемент, не входящий в предыдущие контуры. В рассматриваемом случае число независимых контуров равно 3. Выбирается (произвольно) направление обхода контура. Ток, совпадающий по направлению с направлением обхода контура, считают положительным, а не совпадающий – отрицательным. ЭДС, действующую внутри контура, считают положительной, если при обходе контура внутри её происходит повышение потенциала (от минуса к плюсу), в противном случае – отрицательной. Падение напряжения на участке цепи считают положительным, если направление тока на нем совпадает с направлением обхода контура.
В рассматриваемом случае для независимого контура AE1R1R4BE2R2A (без учета падения напряжения на внутреннем сопротивлении источников тока) можно записать
.
(6.50)
Для независимого контура AR2E2E3R3A (без учета падения напряжения на внутреннем сопротивлении источников тока) -
.
(6.51)
Таким образом, в рассматриваемом случае имеем систему уравнений
(6.52)
Решая систему уравнений (6.52), можно определить неизвестные, заданные условием задачи.
Надо отметить, что первоначальный выбор направлений токов и обхода контуров не играет никакой роли. После проведения расчетов значение токов будет получено со знаком, при этом знак "плюс" будет соответствовать правильному выбору направления тока в элементе цепи, "минус" – обратному.